Journal of Chinese Pharmaceutical Sciences ›› 2021, Vol. 30 ›› Issue (10): 785-793.DOI: 10.5246/jcps.2021.10.066
• Review • Next Articles
Guifang Duan*(), Bo Xu, Xia Yuan, Shuxiang Song
Received:
2021-04-13
Revised:
2021-05-12
Accepted:
2021-05-16
Online:
2021-10-24
Published:
2021-10-24
Contact:
Guifang Duan
Supporting:
Guifang Duan, Bo Xu, Xia Yuan, Shuxiang Song. High-throughput screening technologies for ion channel drug discovery[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(10): 785-793.
[1] |
Lipkind, G.M.; Fozzard, H.A. Ion Channels. Biochemistry. 2000, 39, 8161–8170.
|
[2] |
Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev. 1999, 51, 7–61.
|
[3] |
Böcker, A.; Schaertl, S.; Hess, S.D., CHAPTER 2 High-Throughput Screening. In Ion Channel Drug Discovery. The Royal Society of Chemistry. 2015, 16–41.
|
[4] |
Catterall, W.A. Voltage-gated sodium channels at 60: structure, function and pathophysiology. J. Physiol. 2012, 590, 2577–2589.
|
[5] |
Willumsen, N.J.; Bech, M.; Olesen, S.P.; Jensen, B.S.; Korsgaard, M.P.G.; Christophersen, P. High throughput electrophysiology: new perspectives for ion channel drug discovery. Recept. Channels. 2003, 9, 3–12.
|
[6] |
Thibault, G.; Schiffrin, E.L. Radioligand binding assay. Methods Mol. Med. 2001, 51, 305.
|
[7] |
Finlayson, K.; Sharkey, J.; A High-Throughput Binding Assay for HERG. 2004, 353–368. In: Yan Z.; Caldwell G.W. (eds) Optimization in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-800-5:353.
|
[8] |
Diaz, G.J.; Daniell, K.; Leitza, S.T.; Martin, R.L.; Su, Z.; McDermott, J.S.; Cox, B.F.; Gintant, G.A. The [3H] dofetilide binding assay is a predictive screening tool for hERG blockade and proarrhythmia: Comparison of intact cell and membrane preparations and effects of altering [K+]. J. Pharmacol. Toxicol. Methods. 2004, 50, 187–199.
|
[9] |
Gill, S.; Gill, R.; Wen, Y.; Enderle, T.; Roth, D.; Liang, D. A High-Throughput Screening Assay for NKCC1 Cotransporter Using Nonradioactive Rubidium Flux Technology. Assay Drug Dev. Technol. 2017, 15, 167–177.
|
[10] |
Scott, C.W.; Wilkins, D.E. Trivedi, S.; Crankshaw, D.J. A medium-throughput functional assay of KCNQ2 potassium channels using rubidium efflux and atomic absorption spectrometry. Anal. Biochem. 2003, 319, 251–257.
|
[11] |
Jow, F.; Tseng, E.; Maddox, T.; Shen, R.; Kowal, D.; Dunlop, J.; Mekonnen, B.; Wang, K.W., Rb+ efflux through functional activation of cardiac KCNQ1/minK channels by the benzodiazepine R-L3 (L-364,373). Assay Drug Dev. Technol. 2006, 4, 443.
|
[12] |
Karczewski, J.; Kiss, L.; Kane, S.A.; Koblan, K.S.; Lynch, R.J.; Spencer, R.H. High-throughput analysis of drug binding interactions for the human cardiac channel, Kv1.5. Biochem. Pharmacol. 2009, 77, 177–185.
|
[13] |
Trivedi, S.; Dekermendjian, K.; Julien, R.; Huang, J.; Lund, P.E.; Krupp, J.; Kronqvist, R.; Larsson, O.; Bostwick, R. Cellular HTS assays for pharmacological characterization of Na(V)1.7 modulators. Assay Drug Dev. Technol. 2008, 6, 167–179.
|
[14] |
Grynkiewicz, G.; Poenie, M.; Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 1985, 260, 3440–3450.
|
[15] |
Whiteaker, K.L.; Gopalakrishnan, S.M.; Groebe, D.; Shieh, C.C.; Warrior, U.; Burns, D.J.; Coghlan, M.J.; Scott, V.E.; Gopalakrishnan, M. Validation of FLIPR membrane potential dye for high throughput screening of potassium channel modulators. J. Biomol. Screen. 2001, 6, 305–312.
|
[16] |
Baxter, D.F.; Kirk, M.; Garcia, A.F.; Raimondi, A.; Holmqvist, M.H.; Flint, K.K.; Bojanic, D.; Distefano, P.S.; Curtis, R.; Xie, Y. A novel membrane potential-sensitive fluorescent dye improves cell-based assays for ion channels. J. Biomol. Screen. 2002, 7, 79–85.
|
[17] |
Dai, G.; Haedo, R.J.; Warren, V.A.; Ratliff, K.S.; Bugianesi, R.M.; Rush, A.; Williams, M.E.; Herrington, J.; Smith, M H.M.; Mcmanus, O.B. A high-throughput assay for evaluating state dependence and subtype selectivity of Cav2 calcium channel inhibitors. Assay Drug Dev. Technol. 2008, 6, 195–212.
|
[18] |
Vasilyev, D.V.; Shan, Q.J.; Lee, Y.T.; Soloveva, V.; Nawoschik, S.P.; Kaftan, E.J.; Dunlop, J.; Mayer, S.C.; Bowlby, M.R. A novel high-throughput screening assay for HCN channel blocker using membrane potential-sensitive dye and FLIPR. J. Biomol. Screen. 2009, 14, 1119–1128.
|
[19] |
Joesch, C.; Guevarra, E.; Parel, S.P.; Bergner, A.; Zbinden, P.; Konrad, D.; Albrecht, H. Use of FLIPR membrane potential dyes for validation of high-throughput screening with the FLIPR and microARCS technologies: identification of ion channel modulators acting on the GABA(A) receptor. J .Biomol. Screen. 2008, 13, 218–228.
|
[20] |
Adams, D.S.; Levin, M. Measuring Resting Membrane Potential Using the Fluorescent Voltage Reporters DiBAC4(3) and CC2-DMPE. Cold Spring Harbor Protocols. 2012, 2012, 459–464.
|
[21] |
Christian; W.; Bruno; Fuks; Pierre; Chatelain, Comparative study of membrane potential-sensitive fluorescent probes and their use in ion channel screening assays. J. Biomol. Screening. 2003, 8, 533–543.
|
[22] |
Harkins, A.B.; Kurebayashi, N.; Baylor, S.M. Resting myoplasmic free calcium in frog skeletal muscle fibers estimated with fluo-3. Biophys. J. 1993, 65, 865–881.
|
[23] |
Eberhard, M.; Erne, P. Kinetics of calcium binding to fluo-3 determined by stopped-flow fluorescence. Biochem. Biophys. Res. Commun. 1989, 163, 309–314.
|
[24] |
Gee, K.R.; Brown, K.A.; Chen, W.N.U.; Bishop-Stewart, J.; Gray, D.; Johnson, I. Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium. 2000, 27, 97–106.
|
[25] |
Martin, V.V.; Beierlein, M.; Morgan, J.L.; Rothe, A.; Gee, K.R. Novel fluo-4 analogs for fluorescent calcium measurements. Cell Calcium. 2004, 36, 509–514.
|
[26] |
Vandenberghe, P.A.; Ceuppens, J.L. Flow cytometric measurement of cytoplasmic free calcium in human peripheral blood T lymphocytes with fluo-3, a new fluorescent calcium indicator. J. Immunol. Methods. 1990, 127, 197–205.
|
[27] |
Zhang, W.H.; Rengel, Z.; Kuo, J. Determination of intracellular Ca2+ in cells of intact wheat roots: loading of acetoxymethyl ester of Fluo-3 under low temperature. Plant J. 1998, 15, 147–151.
|
[28] |
Ito, S.; Ohta, T.; Kadota, H.; Kitamura, N.; Nakazato, Y. Measurement of intracellular Na+ concentration by a Na+-sensitive fluorescent dye, sodium-binding benzofuran isophthalate, in porcine adrenal chromaffin cells--usage of palytoxin as a Na+ ionophore. J. Neurosci. Methods. 1997, 75, 21–27.
|
[29] |
Namkung, W.; Song, Y.; Mills, A.D.; Padmawar, P.; Finkbeiner, W.E.; Verkman, A.S. In situ measurement of airway surface liquid [K+] using a ratioable K+-sensitive fluorescent dye. J. Biol. Chem. 2009, 284, 15916–15926.
|
[30] |
Park, M.; Lee, H.; Lee, J.S.; Byun, M.O.; Kim, B.G. In planta measurements of Na+ using fluorescent dye CoroNa green. J. Plant Biol. 2009, 52, 298–302.
|
[31] |
Bridgland-Taylor, M.H.; Hargreaves, A.C.; Easter, A.; Orme, A.; Henthorn, D.C.; Ding, M.; Davis, A.M.; Small, B.G.; Heapy, C.G.; Abi-Gerges, N.; Persson, F.; Jacobson, I.; Sullivan, M.; Albertson, N.; Hammond, T.G.; Sullivan, E.; Valentin, J.P.; Pollard, C.E. Optimisation and validation of a medium-throughput electrophysiology-based hERG assay using IonWorks HT. J. Pharmacol. Toxicol. Methods. 2006, 54, 189–199.
|
[32] |
Harmer, A.R.; Abi-Gerges, N.; Easter, A.; Woods, A.; Lawrence, C.L.; Small, B.G.; Valentin, J.P.; Pollard, C.E. Optimisation and validation of a medium-throughput electrophysiology-based hNav1.5 assay using IonWorks. J. Pharmacol. Toxicol. Methods. 2008, 57, 30–41.
|
[33] |
Kirk; Schroeder; Brad; Neagle; Derek, J.; Trezise, J.W. Ionworks HT: a new high-throughput electrophysiology measurement platform. J. Biomol. Screening. 2003, 8, 50–64.
|
[34] |
Choi, K.; Song, C.; Cheong, C.; Rhim, H. Pharmacological studies of Ca(v)3.1 T-type calcium channels using automated patch-clamp techniques. Gen. Physiol. Biophys. 2011, 30, 100–105.
|
[35] |
Farre, C.; Stoelzle, S.; Haarmann, C.; George, M.; Brüggemann, A.; Fertig, N. Automated ion channel screening: patch clamping made easy. Expert. Opin. Ther. Targets 2007, 11, 557–565.
|
[36] |
Kutchinsky, J.; Friis, S.; Asmild, M.; Taboryski, R.; Pedersen, S.; Vestergaard, R.K.; Jacobsen, R.B.; Krzywkowski, K.; Schrder, R.L.; Ljungstrm, T. Characterization of potassium channel modulators with QPatch automated patch-clamp technology: system characteristics and performance. Assay Drug Dev. Technol. 2003, 1, 685–693.
|
[37] |
Milligan, C.J.; Jiang, L.H. Automated planar patch-clamp. Methods Mol. Biol. 2013, 998, 171.
|
[38] |
Niels Fertig, A.B.; Mohamed, K; Michael G.; Sonja, S.; Claudia, H.; Cecilia, F.; Alison, H. Port-a-Patch and Patchliner: High Fidelity Electrophysiology for Secondary Screening and Safety Pharmacology. Comb. Chem. High Throughput Screening. 2009, 12, 24–37.
|
[39] |
Yu, W.; Ljkner, L.D.; Lindqvist, A. Qube384 As a Tool for Assay Optimization of CiPA Cells and Protocols by Using Multiple IC, EC Solutions and hERG, Nav1.5 and Cav1.2 on the Same QChip - ScienceDirect. J. Pharmacol. Toxicol. Methods. 2017, 88, 200–200.
|
[40] |
Raphemot, R.; Kadakia, R.J.; Olsen, M.L.; Banerjee, S.; Days, E.; Smith, S.S.; Weaver, C.D.; Denton, J.S. Development and validation of fluorescence-based and automated patch clamp-based functional assays for the inward rectifier potassium channel Kir4.1. Assay Drug Dev. Technol. 2013, 11, 532–543.
|
[41] |
Schrøder, R.L.; Friis, S.; Sunesen, M.; Mathes, C.; Willumsen, N.J. Automated patch-clamp technique: increased throughput in functional characterization and in pharmacological screening of small-conductance Ca2+ release-activated Ca2+ channels. J. Biomol. Screen. 2008, 13, 638–647.
|
[42] |
Liu, Y. Electrophysiological Studies of Voltage-Gated Sodium Channels Using QPatch HT, an Automated Patch-Clamp System. Curr. Protoc. Pharmacol. 2014, 65, 11.14.1–11.14.45.
|
[43] |
Scheel, O.; Frech, S.; Amuzescu, B.; Eisfeld, J.R.; Lin, K.H.; Knott, T., Action potential characterization of human induced pluripotent stem cell-derived cardiomyocytes using automated patch-clamp technology. Assay Drug Dev. Technol. 2014, 12, 457–469.
|
[1] | Xiaowei Chi, Qi Li, Yi Zhong, Tong Gong, Chuxiao Yi, Liangren Zhang, Zhenming Liu. Discovery of potential xanthine oxidase inhibitors based on virtual screening [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 626-635. |
[2] | Chennan Liu, Qian Wang, Jiangxue Han, Sihan Liu, Chunling Xiao, Yan Guan, Xinghua Li, Ying Wang, Xiao Wang, Jianzhou Meng, Maoluo Gan, Yishuang Liu. Virtual screening and high-throughput testing of L1 metallo-β-lactamase inhibitor [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(10): 806-812. |
[3] | Peili Jiao, Yiyan Li, Xing Wu, Yuxi Wang, Beibei Mao, Hongwei Jin, Lihe Zhang, Liangren Zhang, Zhenming Liu. Structure-based design and biological evaluation of novel mTOR inhibitors as potential anti-cervical agents [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(9): 603-616. |
[4] | Jing Wang, Qian Wang, Shuxiang Song. Research progress of surface plasmon resonance technology in drug discovery [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(7): 504-513. |
[5] | Jing Deng, Fei Zhao, Jian Li, Hong Liu, Hualiang Jiang* . Discovery and early evaluation of new chemical entities [J]. , 2012, 21(5): 369-387. |
[6] | Xin Cai, Jing Chen, Bo Bai* . Exploring the specific role of GPCRs dimerization in drug discovery [J]. , 2011, 20(6): 535-541. |
[7] | Mei Han*, Jin-Feng Li, Qi Tan, Yuan-Yuan Sun, Yong-Yan Wang. Limitations of the use of MTT assay for screening in drug discovery [J]. , 2010, 19(3): 195-200. |
[8] | CHEN Qing-wen, SHAN Hong-li, WANG He, LI Zhe, YANG Bao-feng*. Mechanisms of Cyclovirobuxine D on APD Prolongation in Rat Ventricular Myocytes [J]. , 2003, 12(3): 142-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||