[1] The compiling group of the Report on Stroke Prevention and Treatment in China. The Prevention and Treatment of Stroke Still Face Huge Challenges—Brief Report on Stroke Prevention and Treatment in China. Chin. Circ. J. 2019, 34, 105-119.
[2] Hu, S.; Gao, R.; Liu, L.; Zhu, M.; Wang, W.; Wang, Y.; Wu, Z.; Li, H.; Gu, D.; Yang, Y.; Zheng, Z.; Chen, W. Summary of the 2018 Report on Cardiovascular Diseases in China. Chin. Circ. J. 2019, 34, 209-220.
[3] Ginsberg, M.D. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology. 2008, 55, 363-389.
[4] Patel, R.A.G.; McMullen, P.W. Neuroprotection in the treatment of acute ischemic stroke. Prog. Cardiovasc. Dis. 2017, 59, 542-548
[5] Zhang, Y.; Zheng, D.; Shui, M.; Liu, Y.; Liu, X.; Wang, Y. A new compound W026B alleviates ischemic brain injury through inhibiting the production of inflammatory cytokines in pMCAO and tMCAO, and enhances the beneficial effect of tPA. J. Chin. Pharm. Sci. 2018, 27, 675-685.
[6] Majid, A. Neuroprotection in stroke: past, present, and future. ISRN Neurol. 2014, 2014, 515716.
[7] Jiang, T.; Gao, L.; Guo, J.; Lu, J.; Wang, Y.; Zhang, Y.D. Suppressing inflammation by inhibiting the NF-κB pathway contributes to the neuroprotective effect of angiotensin-(1-7) in rats with permanent cerebral ischaemia. Br. J. Pharmacol. 2012, 167, 1520-1532.
[8] Yu, L.; Chen, C.; Wang, L.F.; Kuang, X.; Liu, K.; Zhang, H.; Du, J.R. Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation by inhibiting the activation of NF-κB and STAT3 in transient focal stroke. PLoS One. 2013, 8, e55839.
[9] Trendelenburg, G. Molecular regulation of cell fate in cerebral ischemia: role of the inflammasome and connected pathways. J. Cereb. Blood Flow Metab. 2014, 34, 1857-1867.
[10] Sekerdag, E.; Solaroglu, I.; Gursoy-Ozdemir, Y. Cell death mechanisms in stroke and novel molecular and cellular treatment options. Curr. Neuropharmacol. 2018, 16, 1396-1415.
[11] Reynhout, S.; Janssens, V. Physiologic functions of PP2A: Lessons from genetically modified mice. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 31-50.
[12] O’Connor, C.M.; Perl, A.; Leonard, D.; Sangodkar, J.; Narla, G. Therapeutic targeting of PP2A. Int. J. Biochem. Cell Biol. 2018, 96, 182-193.
[13] Zhao, S.; Liu, X.; Zhu, Y.; Liu, Y.; Wang, Y. The proteomic study and the target discovery of W026B, a new compound with brain protective effect. J. Chin. Pharm. Sci. 2019, 28, 381-392.
[14] Shui, M.Y.; Liu, X.Y.; Zhu, Y.J.; Wang, Y.Y. Exogenous hydrogen sulfide attenuates cerebral ischemia-reperfusion injury by inhibiting autophagy in mice. Can. J. Physiol. Pharmacol. 2016, 94, 1187-1192.
[15] Yu, K.; Li, R.; Zhu, Y.; Liu, X.; Wang, Y. Engineering the protein targeting two pathways of cerebral ischemia reperfusion injury provides better neuroprotective effect than targeting one pathway. J. Chin. Pharm. Sci. 2019, 28, 760-769.
[16] Swanson, R.A.; Morton, M.T.; Tsao-Wu, G.; Savalos, R.A.; Davidson, C.; Sharp, F.R. A semiautomated method for measuring brain infarct volume. J. Cereb. Blood Flow Metab. 1990, 10, 290-293.
[17] Bu, Q.X.; Liu, X.Y.; Zhu, Y.J.; Liu, Y.; Wang, Y.Y. W007B protects brain against ischemia-reperfusion injury in rats through inhibiting inflammation, apoptosis and autophagy. Brain Res. 2014, 1558, 100-108.
[18] Zhang, W.; Potrovita, I.; Tarabin, V.; Herrmann, O.; Beer, V.; Weih, F.; Schneider, A.; Schwaninger, M. Neuronal activation of NF-kappaB contributes to cell death in cerebral ischemia. J. Cereb. Blood Flow Metab. 2005, 25, 30-40.
[19] Kaushal, V.; Schlichter, L.C. Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J. Neurosci. 2008, 28, 2221-2230.
[20] Broughton, B.R.; Reutens, D.C.; Sobey, C.G. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009, 40, e331-e339. |