[1] Berg, A.T.; Berkovic, S.F.; Brodie, M.J.; Buchhalter, J.; Cross, J.H.; van Emde Boas, W.; Engel, J.; French, J.; Glauser, T.A.; Mathern, G.W.; Moshé, S.L.; Nordli, D.; Plouin, P.; Scheffer, I.E. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia. 2010, 51, 676–685.
[2] Tomson, T.; Nashef, L.; Ryvlin, P. Sudden unexpected death in epilepsy: current knowledge and future directions. Lancet Neurol. 2008, 7, 1021–1031.
[3] Gaitatzis, A.; Carroll, K.; Majeed, A.; W Sander, J. The epidemiology of the comorbidity of epilepsy in the general population. Epilepsia. 2004, 45, 1613–1622.
[4] Löscher, W.; Klitgaard, H.; Twyman, R.E.; Schmidt, D. New avenues for anti-epileptic drug discovery and development. Nat. Rev. Drug Discov. 2013, 12, 757–776.
[5] Cramer, J.A.; Mintzer, S.; Wheless, J.; Mattson, R.H. Adverse effects of antiepileptic drugs: a brief overview of important issues. Expert Rev. Neurother. 2010, 10, 885–891.
[6] Pylvänen, V.; Knip, M.; Pakarinen, A.; Kotila, M.; Turkka, J.; Isojärvi, J.I. Serum insulin and leptin levels in valproate-associated obesity. Epilepsia. 2002, 43, 514–517.
[7] Vorbrodt, A.W.; Dobrogowska, D.H.; Kozlowski, P.B.; Rabe, A.; Tarnawski, M.; Lee, M.H. Immunogold study of effects of prenatal exposure to lipopolysaccharide and/or valproic acid on the rat blood-brain barrier vessels. J. Neurocytol. 2005, 34, 435–446.
[8] Chukwu, J.; Delanty, N.; Webb, D.; Cavalleri, G.L. Weight change, genetics and antiepileptic drugs. Expert Rev. Clin. Pharmacol. 2014, 7, 43–51.
[9] Arora, E.; Singh, H.; Gupta, Y.K. Impact of antiepileptic drugs on bone health: Need for monitoring, treatment, and prevention strategies. J. Family Med. Prim. Care. 2016, 5, 248–253.
[10] Potschka, H. Transporter hypothesis of drug-resistant epilepsy: challenges for pharmacogenetic approaches. Pharmacogenomics. 2010, 11, 1427–1438.
[11] Tolou-Ghamari, Z. Antiepileptic drugs (AEDs) polypharmacy could lead to buried pharmacokinetic interactions due to CYP450. Drug Metab. Lett. 2012, 6, 207–212.
[12] Turpin, E.; Muscat, A.; Vatier, C.; Chetrite, G.; Corruble, E.; Moldes, M.; Fève, B. Carbamazepine directly inhibits adipocyte differentiation through activation of the ERK 1/2 pathway. Br. J. Pharmacol. 2013, 168, 139–150.
[13] Engel, J. Jr, McDermott, M.P.; Wiebe, S.; Langfitt, J.T.; Stern, J.M.; Dewar, S.; Sperling, M.R.; Gardiner, I.; Erba, G.; Fried, I.; Jacobs, M.; Vinters, H.V.; Mintzer, S.; Kieburtz, K.; Early Randomized Surgical Epilepsy Trial (ERSET) Study Group. Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA. 2012, 307, 922–930.
[14] Ghosh, A.; Giese, K.P. Calcium/calmodulin-dependent kinase II and Alzheimer's disease. Mol. Brain. 2015, 8, 78.
[15] Giachin, G.; Bouverot, R.; Acajjaoui, S.; Pantalone, S.; Soler-López, M. Dynamics of human mitochondrial complex I assembly: implications for neurodegenerative diseases. Front Mol. Biosci. 2016, 3, 43.
[16] Yang, H.; Song, Z.; Yang, G.P.; Zhang, B.K.; Chen, M.; Wu, T.; Guo, R. The ALDH2 rs671 polymorphism affects post-stroke epilepsy susceptibility and plasma 4-HNE levels. PLoS One. 2014, 9, e109634.
[17] Sheehan, D.; Meade, G.; Foley, V.M.; Dowd, C.A. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 2001, 360, 1–16.
[18] Oakley, A. Glutathione transferases: a structural perspective. Drug Metab. Rev. 2011, 43, 138–151.
[19] French, J.A.; Kanner, A.M.; Bautista, J.; Abou-Khalil, B.; Browne, T.; Harden, C.L.; Theodore, W.H.; Bazil, C.; Stern, J.; Schachter, S.C.; Bergen, D.; Hirtz, D.; Montouris, G.D.; Nespeca, M.; Gidal, B.; Marks, W.J. Jr, Turk, W.R.; Fischer, J.H.; Bourgeois, B.; Wilner, A.; Faught, R.E.; Jr, Sachdeo, R.C.; Beydoun, A.; Glauser, T.A.; American Academy of Neurology Therapeutics and Technology Assessment Subcommittee, American Academy of Neurology Quality Standards Subcommittee, American Epilepsy Society Quality Standards Subcommittee, American Epilepsy Society Therapeutics and Technology Assessment Subcommittee. Efficacy and tolerability of the new antiepileptic drugs, I: Treatment of new-onset epilepsy: report of the TTA and QSS Subcommittees of the American Academy of Neurology and the American Epilepsy Society. Epilepsia. 2004, 45, 401–409.
[20] Warholm, M.; Stenius, U.; Ståhl, A.; Högberg, J. Resistance against ethacrynic acid in glutathione transferase 7-7 (GST-P)-positive hepatocytes isolated from carcinogen-treated rats: the role of cytoskeletal changes and ATP depletion. Toxicol. In Vitro. 1995, 9, 937–943.
[21] Michailidou, I.; Willems, J.G.; Kooi, E.J.; van Eden, C.; Gold, S.M.; Geurts, J.J.; Baas, F.; Huitinga, I.; Ramaglia, V. Complement C1q-C3-associated synaptic changes in multiple sclerosis hippocampus. Ann. Neurol. 2015, 77, 1007–1026.
[22] Schartz, N.D.; Wyatt-Johnson, S.K.; Price, L.R.; Colin, S.A.; Brewster, A.L. Status epilepticus triggers long-lasting activation of complement C1q-C3 signaling in the hippocampus that correlates with seizure frequency in experimental epilepsy. Neurobiol. Dis. 2018, 109, 163–173.
[23] Ricklin, D.; Hajishengallis, G.; Yang, K.; Lambris, J.D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 2010, 11, 785–797.
[24] Hosokawa, M.; Klegeris, A.; Maguire, J.; McGeer, P.L. Expression of complement messenger RNAs and proteins by human oligodendroglial cells. Glia. 2003, 42, 417–423.
[25] Vastag, M.; Skopál, J.; Kramer, J.; Kolev, K.; Vokó, Z.; Csonka, E.; Machovich, R.; Nagy, Z. Endothelial cells cultured from human brain microvessels produce com-plement proteins factor H, factor B, C1 inhibitor, and C4. Immunobiology. 1998, 199, 5–13.
[26] Stevens, B.; Allen, N.J.; Vazquez, L.E.; Howell, G.R.; Christopherson, K.S.; Nouri, N.; Micheva, K.D.; Mehalow, A.K.; Huberman, A.D.; Stafford, B.; Sher, A.; Litke, A.M.; Lambris, J.D.; Smith, S.J.; John, S.W.; Barres, B.A. The classical complement cascade mediates CNS synapse elimination. Cell. 2007, 131, 1164–1178.
[27] Pekny, M.; Wilhelmsson, U.; Bogestål, Y.R.; Pekna, M. The role of astrocytes and complement system in neural plasticity. Int. Rev. Neurobiol. 2007, 82, 95–111.
[28] Schafer, D.P.; Lehrman, E.K.; Kautzman, A.G.; Koyama, R.; Mardinly, A.R.; Yamasaki, R.; Ransohoff, R.M.; Greenberg, M.E.; Barres, B.A.; Stevens, B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012, 74, 691–705.
[29] Paolicelli, R.C.; Bolasco, G.; Pagani, F.; Maggi, L.; Scianni, M.; Panzanelli, P.; Giustetto, M.; Ferreira, T.A.; Guiducci, E.; Dumas, L.; Ragozzino, D.; Gross, C.T. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011, 333, 1456–1458.
[30] Sekar, A.; Bialas, A.R.; de Rivera, H.; Davis, A.; Hammond, T.R.; Kamitaki, N.; Tooley, K.; Presumey, J.; Baum, M.; Van Doren, V.; Genovese, G.; Rose, S.A.; Handsaker, R.E.; Schizophrenia Working Group of the Psychiatric Genomics Consortium, Daly, M.J.; Carroll, M.C.; Stevens, B.; McCarroll, S.A. Schizophrenia risk from complex variation of complement component 4. Nature. 2016, 530, 177–183.
[31] Veerhuis, R.; Nielsen, H.M.; Tenner, A.J. Complement in the brain. Mol. Immunol. 2011, 48, 1592–1603.
[32] Parent, J.M.; Elliott, R.C.; Pleasure, S.J.; Barbaro, N.M.; Lowenstein, D.H. Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann. Neurol. 2006, 59, 81–91.
[33] Larner, A.J. Axonal sprouting and synaptogenesis in temporal lobe epilepsy: possible pathogenetic and therapeutic roles of neurite growth inhibitory factors. Seizure. 1995, 4, 249–258.
[34] Parent, J.M.; Yu, T.W.; Leibowitz, R.T.; Geschwind, D.H.; Sloviter, R.S.; Lowenstein, D.H. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 1997, 17, 3727–3738.
[35] Seuwen, A.; Schroeter, A.; Grandjean, J.; Rudin, M. Metabolic changes assessed by MRS accurately reflect brain function during drug-induced epilepsy in mice in contrast to fMRI-based hemodynamic readouts. Neuroimage. 2015, 120, 55–63.
[36] Mayr, J.A.; Zimmermann, F.A.; Fauth, C.; Bergheim, C.; Meierhofer, D.; Radmayr, D.; Zschocke, J.; Koch, J.; Sperl, W. Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation. Am. J. Hum. Genet. 2011, 89, 792–797.
[37] Cloix, J.F.; Hévor, T. Epilepsy, regulation of brain energy metabolism and neurotransmission. Curr. Med. Chem. 2009, 16, 841–853.
[38] Samokhina, E.; Popova, I.; Malkov, A.; Ivanov, A.I.; Papadia, D.; Osypov, A.; Molchanov, M.; Paskevich, S.; Fisahn, A.; Zilberter, M.; Zilberter, Y. Chronic inhibition of brain glycolysis initiates epileptogenesis. J. Neurosci. Res. 2017, 95, 2195–2206.
[39] Blum, D.E.; Ehsan, T.; Dungan, D.; Karis, J.P.; Fisher, R.S. Bilateral temporal hypometabolism in epilepsy. Epilepsia. 1998, 39, 651–659.
[40] Koutroumanidis, M.; Hennessy, M.J.; Seed, P.T.; Elwes, R.D.; Jarosz, J.; Morris, R.G.; Maisey, M.N.; Binnie, C.D.; Polkey, C.E. Significance of interictal bilateral temporal hypometabolism in temporal lobe epilepsy. Neurology. 2000, 54, 1811–1821. |