Journal of Chinese Pharmaceutical Sciences ›› 2020, Vol. 29 ›› Issue (1): 1-12.DOI: 10.5246/jcps.2020.01.001
• Review • Next Articles
Eric Wei Chiang Chan1*, Chen Wai Wong1, Siu Kuin Wong2, Yew Woh Hui2, Joash Ban Lee Tan3
Received:
2019-10-13
Revised:
2019-11-04
Online:
2020-01-21
Published:
2019-11-23
Contact:
Tel.: +60-3-9101-8880, E-mail: chanwc@ucsiuniversity.edu.my, erchan@yahoo.com
About author:
Dr. Eric Chan, Associate Professor at the Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia, obtained his PhD (Natural Product Chemistry) from Monash University Malaysia in 2009. To date, Dr. Eric Chan has 88 publications in international refereed journals with 66 (5 in JCPS) as the lead author. His publications have received more than 1289 citations in Scopus and 2716 citations in Google Scholar. He was one of the Top 5 Competitors of the Elsevier Green and Sustainable Chemistry Challenge 2015, out of 500 proposals submitted globally. In April 2016, he presented his proposal at the Green and Sustainable Chemistry Conference in Berlin, Germany. In the same month, he was awarded the Promising Researcher Award by UCSI University.
CLC Number:
Supporting:
Eric Wei Chiang Chan, Chen Wai Wong, Siu Kuin Wong, Yew Woh Hui, Joash Ban Lee T. Emodin and shikonin (quinones): an overview of their chemistry, plant sources, pharmacology and cytotoxic activities against lung cancer[J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(1): 1-12.
[1] Lu, J.J.; Bao, J.L.; Wu, G.S.; Xu, W.S.; Huang, M.Q.; Chen, X.P.; Wang, Y.T. Quinones derived from plant secondary metabolites as anti-cancer agents. Anticancer Agents Med. Chem. 2013, 13, 456–463.
[2] Duval, J.; Pecher, V.; Poujol, M.; Lesellier, E. Research advances for the extraction, analysis and uses of anthraquinones: A review. Ind. Crop. Prod. 2016, 94, 812−833.
[3] Huang, Q.; Lu, G.D.; Shen, H.M.; Chung, M.C.; Ong, C.N. Anti-cancer properties of anthraquinones from rhubarb. Med. Res. Rev. 2007, 27, 609–630.
[4] López, L.I.L.; Flores, S.D.N.; Belmares, S.Y.S.; Galindo, A.S. Naphthoquinones: Biological properties and synthesis of lawsone and derivatives - A structured review. Vitae. 2014, 21, 248−258.
[5] Papageorgiou, V.P.; Assimopoulou, A.N.; Couladouros, E.A.; Hepworth, D.; Nicolaou, K.C. The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. Angew. Chem. Int. Ed. Engl. 1999, 38, 270–301.
[6] Verma, R.P. Anti-cancer activities of 1, 4-naphthoquinones: a QSAR study. Anticancer Agents Med. Chem. 2006, 6, 489–499.
[7] Wellington, K.W. Understanding cancer and the anticancer activities of naphthoquinones - A review. RSC Adv. 2015, 5, 20309−20338.
[8] Kayashima, T.; Mori, M.; Yoshida, H.; Mizushina, Y.; Matsubara, K. 1, 4-Naphthoquinone is a potent inhibitor of human cancer cell growth and angiogenesis. Cancer Lett. 2009, 278, 34–40.
[9] Prachayasittikul, V.; Pingaew, R.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, anticancer activity and QSAR study of 1, 4-naphthoquinone derivatives. Eur. J. Med. Chem. 2014, 84, 247–263.
[10] Benites, J.; Valderrama, J.A.; Bettega, K.; Pedrosa, R.C.; Calderon, P.B.; Verrax, J. Biological evaluation of donor-acceptor aminonaphthoquinones as antitumor agents. Eur. J. Med. Chem. 2010, 45, 6052–6057.
[11] Miranda-Filho, A.; Piñeros, M.; Bray, F. The descriptive epidemiology of lung cancer and tobacco control: a global overview 2018. Salud Publica Mex. 2019, 61, 219–229.
[12] Furrukh, M. Tobacco smoking and lung cancer: perception-changing facts. Sultan Qaboos Univ. Med. J. 2013, 13, 345–358.
[13] Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30.
[14] Barney, J.N.; Tharayil, N.; DiTommaso, A.; Bhowmik, P.C. The biology of invasive alien plants in Canada. 5. Polygonum cuspidatum Sieb. & Zucc. [Fallopia japonica (Houtt.) Ronse Decr.]. Can. J. Plant Sci. 2006, 86, 887−906.
[15] Dong, X.; Fu, J.; Yin, X.; Cao, S.; Li, X.; Lin, L.; Huyiligeqi; Ni, J. Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytother. Res. 2016, 30, 1207−1218.
[16] Dong, J.W.; Cai, L.; Fang, Y.S.; Duan, W.H.; Li, Z.J.; Ding, Z.T. Simultaneous, simple and rapid determination of five bioactive free anthraquinones in Radix et RhizomaRhei by quantitative 1H NMR. J. Braz. Chem. Soc. 2016, 27, 2120−2126.
[17] Wang, T.H.; Zhang, J.; Qiu, X.H.; Bai, J.Q.; Gao, Y.H.; Xu, W. Application of ultra-high-performance liquid chromatography coupled with LTQ-orbitrap mass spectrometry for the qualitative and quantitative analysis of polygonum multiflorum thumb. and its processed products. Molecules. 2015, 21, E40.
[18] Doogue, M.P.; Polasek, T.M. The ABCD of clinical pharmacokinetics. Ther. Adv. Drug Saf. 2013, 4, 5–7.
[19] Liu, W.; Feng, Q.; Li, Y.; Ye, L.; Hu, M.; Liu, Z.Q. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin. Toxicol. Appl. Pharmacol. 2012, 265, 316–324.
[20] Shia, C.S.; Hou, Y.C.; Tsai, S.Y.; Huieh, P.H.; Leu, Y.L.; Chao, P.D. Differences in pharmacokinetics and ex vivo antioxidant activity following intravenous and oral administrations of emodin to rats. J. Pharm. Sci. 2010, 99, 2185–2195.
[21] Di, X.; Wang, X.; Di, X.; Liu, Y.P. Effect of piperine on the bioavailability and pharmacokinetics of emodin in rats. J. Pharm. Biomed. Anal. 2015, 115, 144–149.
[22] He, L.; Bi, J.J.; Guo, Q.; Yu, Y.; Ye, X.F. Effects of emodin extracted from Chinese herbs on proliferation of non-small cell lung cancer and underlying mechanisms. Asian Pac. J. Cancer Prev. 2012, 13, 1505–1510.
[23] Kuo, Y.C.; Sun, C.M.; Ou, J.C.; Tsai, W.J. A tumor cell growth inhibitor from Polygonum hypoleucum Ohwi. Life Sci. 1997, 61, 2335–2344.
[24] Chan, T.C.; Chang, C.J.; Koonchanok, N.M.; Geahlen, R.L. Selective inhibition of the growth of ras-transformed human bronchial epithelial cells by emodin, a protein-tyrosine kinase inhibitor. Biochem. Biophys. Res. Commun. 1993, 193, 1152–1158.
[25] Lee, H.Z. Effects and mechanisms of emodin on cell death in human lung squamous cell carcinoma. Br. J. Pharmacol. 2001, 134, 11–20.
[26] Su, Y.T.; Chang, H.L.; Shyue, S.K.; Hsu, S.L. Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Biochem. Pharmacol. 2005, 70, 229–241.
[27] Fu, Z.Y.; Han, J.X.; Huang, H.Y. Effects of emodin on gene expression profile in small cell lung cancer NCI-H446 cells. Chin. Med. J. 2007, 120, 1710–1715.
[28] Chen, R.S.; Jhan, J.Y.; Su, Y.J.; Lee, W.T.; Cheng, C.M.; Ciou, S.C.; Lin, S.T.; Chuang, S.M.; Ko, J.C.; Lin, Y.W. Emodin enhances gefitinib-induced cytotoxicity via Rad51 down-regulation and ERK1/2 inactivation. Exper. Cell Res. 2009, 315, 2658−2672.
[29] Lai, J.M.; Chang, J.T.; Wen, C.L.; Hsu, S.L. Emodin induces a reactive oxygen species-dependent and ATM-p53-Bax mediated cytotoxicity in lung cancer cells. Eur. J. Pharmacol. 2009, 623, 1–9.
[30] Ko, J.C.; Su, Y.J.; Lin, S.T.; Jhan, J.Y.; Ciou, S.C.; Cheng, C.M.; Chiu, Y.F.; Kuo, Y.H.; Tsai, M.S.; Lin, Y.W. Emodin enhances cisplatin-induced cytotoxicity via down-regulation of ERCC1 and inactivation of ERK1/2. Lung Cancer. 2010, 69, 155–164.
[31] Ok, S.; Kim, S.M.; Kim, C.; Nam, D.; Shim, B.S.; Kim, S.H.; Ahn, K.S.; Choi, S.H.; Ahn, K.S. Emodin inhibits invasion and migration of prostate and lung cancer cells by down-regulating the expression of chemokine receptor CXCR4. Immunopharmacol. Immunotoxicol. 2012, 34, 768−778.
[32] Su, J.; Yan, Y.; Qu, J.K.; Xue, X.W.; Liu, Z.; Cai, H. Emodin induces apoptosis of lung cancer cells through ER stress and the TRIB3/NF-κB pathway. Oncol. Rep. 2017, 37, 1565–1572.
[33] Tang, Q.; Wu, J.J.; Zheng, F.; Hann, S.S.; Chen, Y.Q. Emodin increases expression of insulin-like growth factor binding protein 1 through activation of MEK/ERK/AMPKα and interaction of PPARγ and sp1 in lung cancer. Cell Physiol. Biochem. 2017, 41, 339–357.
[34] Wang, X.; Li, L.; Guan, R.J.; Zhu, D.N.; Song, N.N.; Shen, L.L. Emodin inhibits ATP-induced proliferation and migration by suppressing P2Y receptors in human lung adenocarcinoma cells. Cell Physiol. Biochem. 2017, 44, 1337–1351.
[35] Yuan, Y.; Liao, Q.W.; Xue, M.M.; Song, Z.J.; Tong, C.Y.; Tao, Z.G. Emodin: one main ingredient of shufeng jiedu capsule reverses chemoresistance of lung cancer cells through inhibition of EMT. Cell Physiol. Biochem. 2017, 42, 1063–1072.
[36] Haque, E.; Kamil, M.; Irfan, S.; Sheikh, S.; Hasan, A.; Nazir, A.; Mir, S.S. Blocking mutation independent p53 aggregation by emodin modulates autophagic cell death pathway in lung cancer. Int. J. Biochem. Cell Biol. 2018, 96, 90–95.
[37] Chen, S.F.; Zhang, Z.Y.; Zhang, J.L. Emodin enhances antitumor effect of paclitaxel on human non-small-cell lung cancer cells in vitro and in vivo. Drug Des. Dev. Ther. 2019, 13, 1145–1153.
[38] Li, Z.B.; Lin, Y.K.; Zhang, S.H.; Zhou, L.; Yan, G.X.; Wang, Y.H.; Zhang, M.D.; Wang, M.Q.; Lin, H.H.; Tong, Q.Z.; Duan, Y.J.; Du, G.J. Emodin regulates neutrophil phenotypes to prevent hypercoagulation and lung carcinogenesis. J. Transl. Med. 2019, 17, 90.
[39] Iwanowycz, S.; Wang, J.F.; Hodge, J.; Wang, Y.Z.; Yu, F.; Fan, D.P. Emodin inhibits breast cancer growth by blocking the tumor-promoting feedforward loop between cancer cells and macrophages. Mol. Cancer Ther. 2016, 15, 1931–1942.
[40] Saunders, I.T.; Mir, H.; Kapur, N.; Singh, S. Emodin inhibits colon cancer by altering BCL-2 family proteins and cell survival pathways. Cancer Cell Int. 2019, 19, 98.
[41] Wang, W.; Sun, Y.P.; Li, X.X.; Li, H.; Chen, Y.Y.; Tian, Y.; Yi, J.; Wang, J. Emodin potentiates the anticancer effect of cisplatin on gallbladder cancer cells through the generation of reactive oxygen species and the inhibition of survivin expression. Oncol. Rep. 2011, 26, 1143–1148.
[42] Zhou, J.; Li, G.; Han, G.; Feng, S.; Liu, Y.; Chen, J.; Liu, C.; Zhao, L.; Jin, F. Emodin induced necroptosis in the glioma cell line U251 via the TNF-α/RIP1/RIP3 pathway. Invest. New Drugs. 2019, https://doi.org/10.1007/ s10637-019-00764-w.
[43] Shieh, D.E.; Chen, Y.Y.; Yen, M.H.; Chiang, L.C.; Lin, C.C. Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells. Life Sci. 2004, 74, 2279–2290.
[44] Hsu, C.M.; Hsu, Y.A.; Tsai, Y.; Shieh, F.K.; Huang, S.H.; Wan, L.; Tsai, F.J. Emodin inhibits the growth of hepatoma cells: finding the common anti-cancer pathway using Huh7, Hep3B, and HepG2 cells. Biochem. Biophys. Res. Commun. 2010, 392, 473–478.
[45] Lin, W.F.; Zhong, M.F.; Liang, S.F.; Chen, Y.; Liu, D.; Yin, Z.F.; Cao, Q.X.; Wang, C.; Ling, C.Q. Emodin inhibits migration and invasion of MHCC-97H human hepatocellular carcinoma cells. Exp. Ther. Med. 2016, 12, 3369–3374.
[46] Lu, J.J.; Xu, Y.; Zhao, Z.; Ke, X.N.; Wei, X.; Kang, J.; Zong, X.; Mao, H.L.; Liu, P.S. Emodin suppresses proliferation, migration and invasion in ovarian cancer cells by down regulating ILK in vitro and in vivo. Onco Targets. Ther. 2017, 10, 3579–3589.
[47] Wei, W.T.; Chen, H.; Ni, Z.L.; Liu, H.B.; Tong, H.F.; Fan, L.; Liu, A.; Qiu, M.X.; Liu, D.L.; Guo, H.C.; Wang, Z.H.; Lin, S.Z. Antitumor and apoptosis-promoting properties of emodin, an anthraquinone derivative from Rheum officinale Baill, against pancreatic cancer in mice via inhibition of Akt activation. Int. J. Oncol. 2011, 39, 1381–1390.
[48] Cha, T.L.; Qiu, L.; Chen, C.T.; Wen, Y.; Hung, M.C. Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth. Cancer Res. 2005, 65, 2287–2295.
[49] Boulos, J.C.; Rahama, M.; Hegazy, M.F.; Efferth, T. Shikonin derivatives for cancer prevention and therapy. Cancer Lett. 2019, 459, 248–267.
[50] Wang, R.B.; Yin, R.T.; Zhou, W.; Xu, D.F.; Li, S.S. Shikonin and its derivatives: a patent review. Expert Opin. Ther. Pat. 2012, 22, 977–997.
[51] Andújar, I.; Ríos, J.L.; Giner, R.M.; Recio, M.C. Pharmacological properties of shikonin - a review of literature since 2002. Planta Med. 2013, 79, 1685–1697.
[52] Chen, X.; Yang, L.; Oppenheim, J.J.; Howard, M.Z. Cellular pharmacology studies of shikonin derivatives. Phytother. Res. 2002, 16, 199–209.
[53] Huang, W.; Zhang, C.; Li, S.; Liang, Y.; Wang, H.; Chen, S. Online HPLC-DAD coupled with ESI-IT-TOF-MS and fluorescence detection to identify DNA-binding compounds from Lithospermum erythrorhizon using acridine orange as the fluorescence probe. J. Chin. Pharm. Sci. 2015, 24, 581–590.
[54] Yazaki, K. Lithospermum erythrorhizon cell cultures: Present and future aspects. Plant Biotechnol. (Tokyo) 2017, 34, 131–142.
[55] Zhu, G.; Riedl, H.; Kamelin, R. Lithospermum (Boraginaceae). Flora China. 1995, 16, 342−344.
[56] Wang, R.B.; Yin, R.T.; Zhou, W.; Xu, D.F.; Li, S.S. Shikonin and its derivatives: a patent review. Expert Opin. Ther. Pat. 2012, 22, 977–997.
[57] Chen, X.; Yang, L.; Oppenheim, J.J.; Howard, M.Z. Cellular pharmacology studies of shikonin derivatives. Phytother. Res. 2002, 16, 199–209.
[58] Albreht, A.; Vovk, I.; Simonovska, B. Addition of β-lactoglobulin produces water-soluble shikonin. J. Agric. Food Chem. 2012, 60, 10834–10843.
[59] Assimopoulou, A.N.; Papageorgiou, V.P.; Kiparissides, C. Synthesis and release studies of shikonin-containing microcapsules prepared by the solvent evaporation method. J. Microencapsul. 2003, 20, 581–596.
[60] Wang, F.F.; Yao, X.S.; Zhang, Y.W.; Tang, J.S. Synthesis, biological function and evaluation of Shikonin in cancer therapy. Fitoterapia. 2019, 134, 329–339.
[61] Lin, H.Y.; Li, Z.K.; Bai, L.F.; Baloch, S.K.; Wang, F.; Qiu, H.Y.; Wang, X.; Qi, J.L.; Yang, R.W.; Wang, X.M.; Yang, Y.H. Synthesis of aryl dihydrothiazol acyl shikonin ester derivatives as anticancer agents through microtubule stabilization. Biochem. Pharmacol. 2015, 96, 93–106.
[62] Baloch, S.K.; Ling, L.J.; Qiu, H.Y.; Ma, L.; Lin, H.Y.; Huang, S.C.; Qi, J.L.; Wang, X.M.; Lu, G.H.; Yang, Y.H. Synthesis and biological evaluation of novel shikonin ester derivatives as potential anti-cancer agents. RSC Adv. 2014, 4, 35588−35596.
[63] Wang, R.B.; Zhang, X.; Song, H.L.; Zhou, S.S.; Li, S.S. Synthesis and evaluation of novel alkannin and shikonin oxime derivatives as potent antitumor agents. Bioorg. Med. Chem. Lett. 2014, 24, 4304–4307.
[64] Wang, H.Y.; Wu, C.L.; Wan, S.B.; Zhang, H.J.; Zhou, S.W.; Liu, G.T. Shikonin attenuates lung cancer cell adhesion to extracellular matrix and metastasis by inhibiting integrin β1 expression and the ERK1/2 signaling pathway. Toxicology. 2013, 308, 104–112.
[65] Lan, W.J.; Wan, S.B.; Gu, W.Q.; Wang, H.Y.; Zhou, S.W. Mechanisms behind the inhibition of lung adenocarcinoma cell by shikonin. Cell Biochem. Biophys. 2014, 70, 1459–1467.
[66] Qu, D.; Chen, Y.U.; Xu, X.M.; Zhang, M.; Zhang, Y.I.; Li, S.Q. Cbl-b-regulated extracellular signal-regulated kinase signalling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro. Exper. Ther. Med. 2015, 9, 1265−1270.
[67] Yeh, Y.C.; Liu, T.J.; Lai, H.C. Shikonin induces apoptosis, necrosis, and premature senescence of human A549 lung cancer cells through upregulation of p53 expression. Evid. Based Complement. Alternat. Med. 2015, 2015, 620383.
[68] Jeung, Y.J.; Kim, H.G.; Ahn, J.; Lee, H.J.; Lee, S.B.; Won, M.; Jung, C.R.; Im, J.Y.; Kim, B.K.; Park, S.K.; Son, M.J. Shikonin induces apoptosis of lung cancer cells via activation of FOXO3a/EGR1/SIRT1 signalling antagonized by p300. Biochim. Biophy. Acta (BBA) - Mol. Cell Res. 2016, 1863, 2584−2593.
[69] Hsieh, Y.S.; Liao, C.H.; Chen, W.S.; Pai, J.T.; Weng, M.S. Shikonin inhibited migration and invasion of human lung cancer cells via suppression of c-met-mediated epithelial-to-mesenchymal transition. J. Cell Biochem. 2017, 118, 4639–4651.
[70] Kim, H.J.; Hwang, K.E.; Park, D.S.; Oh, S.H.; Jun, H.Y.; Yoon, K.H.; Jeong, E.T.; Kim, H.R.; Kim, Y.S. Shikonin-induced necroptosis is enhanced by the inhibition of autophagy in non-small cell lung cancer cells. J Transl. Med. 2017, 15, 123.
[71] Li, X.; Fan, X.X.; Jiang, Z.B.; Loo, W.T.; Yao, X.J.; Leung, E.L.; Chow, L.W.; Liu, L. Shikonin inhibits gefitinib-resistant non-small cell lung cancer by inhibiting TrxR and activating the EGFR proteasomal degradation pathway. Pharmacol. Res. 2017, 115, 45–55.
[72] Liu, X.C.; Sun, G.Y. Shikonin enhances Adriamycin antitumor effects by inhibiting efflux pumps in A549 cells. Oncol. Lett. 2017, 14, 4270–4276.
[73] Li, Y.L.; Hu, X.; Li, Q.Y.; Wang, F.; Zhang, B.; Ding, K.; Tan, B.Q.; Lin, N.M.; Zhang, C. Shikonin sensitizes wild-type EGFR NSCLC cells to erlotinib and gefitinib therapy. Mol. Med. Rep. 2018, 18, 3882−3890.
[74] Tang, J.C.; Ren, Y.G.; Zhao, J.; Long, F.; Chen, J.Y.; Jiang, Z. Shikonin enhances sensitization of gefitinib against wild-type EGFR non-small cell lung cancer via inhibition PKM2/stat3/cyclinD1 signal pathway. Life Sci. 2018, 204, 71–77.
[75] Guo, X.P.; Zhang, X.Y.; Zhang, S.D. Clinical trial on the effects of shikonin mixture on later stage lung cancer. Chin. J. Mod. Dev. Tradit. Med. 1991, 11, 598–599.
[76] Chen, Y.; Chen, Z.Y.; Chen, L.; Zhang, J.Y.; Fu, L.Y.; Tao, L.; Zhang, Y.; Hu, X.X.; Shen, X.C. Shikonin inhibits triple-negative breast cancer-cell metastasis by reversing the epithelial-to-mesenchymal transition via glycogen synthase kinase 3β-regulated suppression of β-catenin signaling. Biochem. Pharmacol. 2019, 166, 33–45.
[77] He, G.D.; He, G.L.; Zhou, R.Y.; Pi, Z.B.; Zhu, T.Q.; Jiang, L.M.; Xie, Y.B. Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo. Biochem. Biophys. Res. Commun. 2016, 469, 1075–1082.
[78] Zhang, L.L.; Zhan, L.; Jin, Y.D.; Min, Z.L.; Wei, C.; Wang, Q.; Chen, Y.J.; Wu, Q.M.; Hu, X.M.; Yuan, Q. SIRT2 mediated antitumor effects of shikonin on metastatic colorectal cancer. Eur. J. Pharmacol. 2017, 797, 1–8.
[79] Zhai, T.; Hei, Z.Y.; Ma, Q.; Liang, H.B.; Xu, Y.; Zhang, Y.C.; Jin, L.Y.; Han, C.; Wang, J.D. Shikonin induces apoptosis and G0/G1 phase arrest of gallbladder cancer cells via the JNK signaling pathway. Oncol. Rep. 2017, 38, 3473–3480.
[80] Huang, C.; Luo, Y.; Zhao, J.; Yang, F.; Zhao, H.; Fan, W.; Ge, P. Shikonin kills glioma cells through necroptosis mediated by RIP-1. PLoS One. 2013, 8, e66326.
[81] Wang, Y.W.; Zhou, Y.N.; Jia, G.; Han, B.; Liu, J.; Teng, Y.Q.; Lv, J.; Song, Z.F.; Li, Y.L.; Ji, L.; Pan, S.H.; Jiang, H.C.; Sun, B. Shikonin suppresses tumor growth and synergizes with gemcitabine in a pancreatic cancer xenograft model: Involvement of NF-κB signaling pathway. Biochem. Pharmacol. 2014, 88, 322–333.
[82] Chen, Y.Q.; Zheng, L.; Liu, J.Q.; Zhou, Z.H.; Cao, X.L.; Lv, X.; Chen, F.X. Shikonin inhibits prostate cancer cells metastasis by reducing matrix metalloproteinase-2/-9 expression via AKT/mTOR and ROS/ERK1/2 pathways. Int. Immunopharmacol. 2014, 21, 447–455.
[83] Tian, R.; Li, Y.; Gao, M. Shikonin causes cell-cycle arrest and induces apoptosis by regulating the EGFR-NF-κB signalling pathway in human epidermoid carcinoma A431 cells. Biosci. Rep. 2015, 35, e00189. |
[1] | Yingyuan Lu, Mei Zhang, Shengju Yin, Xiaona Dong, Zhiyuan Zhang, Haixu Cheng, Pengfei Tu, Guifang Dou, Yongsheng Che, Zhenghui Xu, Feng Xu, Xian Wang, Chuang Lu, Yaqing Lou, Guoliang Zhang. Epigenetic variants of xenobiotic metabolism affect individual differences in antiepileptic drug 3,4-DCPB pharmacokinetic phenotype [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(1): 1-16. |
[2] | Yanfang Liu, Jiashan Zhang, Yunbiao Tang, Hua Huo. Quantification of flupirtine and its active metabolite D-13223 in human plasma by LC-MS/MS: application to a clinical trial of flupirtine maleate capsules in healthy male Chinese volunteers [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(10): 822-830. |
[3] | Haining Lv, Mingbo Zhao, Yong Jiang, Pengfei Tu . Phenanthrenes, anthraquinones, and phenolic constituents from Sinomenium acutum [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(6): 440-446. |
[4] | Ting Cui, Qixin Zhou, Dan Zhang, Xinhui Jiang. Distribution and pharmacokinetics of five Rhubarb anthraquinones in rabbits and rats [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(2): 115-123. |
[5] | Eric Wei Chiang Chan, Siu Kuin Wong, Hung Tuck Chan. Alpinia zerumbet, a ginger plant with a multitude of medicinal properties: An update on its research findings [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(11): 775-788. |
[6] | Xiaoyuan Zheng, Linguang Zhou, Bo Gao, Song Yang, Bin Jiang. Stakeholder analysis of clinical trials in China: a structural equation model [J]. Journal of Chinese Pharmaceutical Sciences, 2015, 24(8): 552-556. |
[7] | Kongcai Zhu, Wei Xue, Panpan Xie, Aixin Shi, Xin Hu, Yang Li, Min Li, Bei Yan, Jiamin Chi, Fan Dong, Kang Li, Guoying Cao. Safety and tolerability of isradipine in Phase I trial in Chinese population [J]. Journal of Chinese Pharmaceutical Sciences, 2014, 23(3): 194-198. |
[8] |
Chun-Li Hu, Dong-Mei Wang, Peng Zhang, Huai-Qing Zhao*.
Simultaneous determination of four active compounds in Dangguilonghui tablet by high-performance liquid chromatography [J]. , 2008, 17(3): 249-253. |
[9] | ZHANG Mian*, WANG Lei, HUANG Lan, ZHANG Zi-jia, WANG Zheng-tao. Qualitative and Quantitative Analysis of Rhizoma of Polygonum cuspidatum [J]. , 2004, 13(2): 106-111. |
[10] | LU Yan-hua, WANG Zheng-tao*, XU Luo-shan, WU Zi-bin . Three Anthraquinones Isolated from Aster tataricus L.f [J]. , 2003, 12(2): 112-113. |
[11] | Li Huiyi, Luo Shurong, Zhou Tonghui. Metabolism of Shikonin in Rats [J]. , 1999, 8(3): 148-151. |
[12] | Xiu-Zhen Lin, Zhi-Qing Cui, Zhu-Hua Jin, De-Lu. Effects of Emodinon the Cytoplasmic Free Calcium in the Platelets [J]. , 1994, 3(2): 126-131. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||