[1] Danan, G.; Teschke, R. RUCAM in Drug and Herb Induced Liver Injury: The Update. Int. J. Mol. Sci. 2015, 17, 14.
[2] Shah, F.; Medvedev, A.; Wassermann, A.M.; Brodney, M.; Zhang, L.; Makarov, S.; Stanton, R.V. The Identification of Pivotal Transcriptional Factors Mediating Cell Responses to Drugs With Drug-Induced Liver Injury Liabilities. Toxicol. Sci. 2018, 162, 177-188.
[3] Schuster, D.; Laggner, C. Why drugs fail-a study on side effects in new chemical entities. Curr. Pharm. Des. 2005, 11, 3545-3559.
[4] Wagner, M.; Zollner, G. New molecular insights into the mechanisms of cholestasis. J. Hepatol. 2009, 51, 565-580.
[5] Anderson, N.; Borlak, J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Toxicol. Sci. 2008, 60, 311-357.
[6] Jaeschke, H.; Gores, G.J. Mechanisms of hepatotoxicity. Toxicol. Sci. 2002, 65, 166-176.
[7] Jaeschke, H.; McGill, M.R. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab. Rev. 2012, 44, 88-106.
[8] van Beusekom, C.D.; van den Heuvel, J.J. The feline bile salt export pump: a structural and functional comparison with canine and human Bsep/BSEP. BMC Vet. Res. 2013, 9, 259.
[9] Perez, M.J.; Briz, O. Bile-acid-induced cell injury and protection. World J. Gastroenterol. 2009, 15, 1677-1689.
[10] Beuers, U.; Hohenester, S. The biliary HCO(3)(-) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology. 2010, 52, 1489-1496.
[11] Hohenester, S.; Wenniger, L.M. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology. 2012, 55, 173-183.
[12] Shah, A.D.; Wood, D.M. Understanding lactic acidosis in paracetamol (acetaminophen) poisoning. Br. J. Clin. Pharmacol. 2011, 71, 20-28.
[13] Bunchorntavakul, C.; Reddy, K.R. Acetaminophen-related hepatotoxicity. Clin. Liver Dis. 2013, 17, 587-607.
[14] Ostapowicz, G.; Fontana, R.J. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann. Intern. Med. 2002, 137, 947-954.
[15] Tan, S.C.; New, L.S. Prevention of acetaminophen (APAP)-induced hepatotoxicity by leflunomide via inhibition of APAP biotransformation to N-acetyl-p-benzoquinone imine. Toxicol. Lett. 2008, 180, 174-181.
[16] Dahlin, D.C.; Miwa, G.T. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc. Natl. Acad. Sci. USA. 1984, 81, 1327-1331.
[17] Chen, W.; Koenigs, L.L. Oxidation of acetaminophen to its toxic quinone imine and nontoxic catechol metabolites by baculovirus-expressed and purified human cytochromes P450 2E1 and 2A6. Chem. Res. Toxicol. 1998, 11, 295-301.
[18] Aleksunes, L.M.; Slitt, A.L. Induction of Mrp3 and Mrp4 transporters during acetaminophen hepatotoxicity is dependent on Nrf2. Toxicol. Appl. Pharmacol. 2008, 226, 74-83.
[19] Ghanem, C.I.; Ruiz, M.L. Shift from biliary to urinary elimination of acetaminophen-glucuronide in aceta-minophen-pretreated rats. J. Pharmacol. Exp. Ther. 2005, 315, 987-995.
[20] Aleksunes, L.M.; Slitt, A.M. Differential expression of mouse hepatic transporter genes in response to aceta-minophen and carbon tetrachloride. Toxicol. Sci. 2005, 83, 44-52.
[21] Aleksunes, L.M.; Scheffer, G.L. Coordinated expression of multidrug resistance-associated proteins (Mrps) in mouse liver during toxicant-induced injury. Toxicol. Sci. 2006, 89, 370-379.
[22] Jin, Y.W.; Rao, Z. Development of a LC-MS/MS Method for Simultaneous Determination of Bile Acids and their Conjugates in Hepatocytes, Tissue and Fluids in Rat. Curr. Pharm. Anal. 2018, 14, 331-341.
[23] McJunkin, B.; Barwick, K.W. Fatal massive hepatic necrosis following acetaminophen overdose. JAMA. 1976, 236, 1874-1875.
[24] Larson, P.A.; Janower, M.L. The nighthawk: bird of paradise or albatross? J. Am. Coll. Radiol. 2005, 2, 967-970.
[25] Alkiyumi, S.S.; Abdullah, M.A. Ipomoea aquatica extract shows protective action against thioacetamide-induced hepatotoxicity. Molecules. 2012, 17, 6146-6155.
[26] James, A.P.; Slivkoff-Clark, K. Ipomoea aquatica extract shows protective action against thioacetamide-induced hepatotoxicity. Asia Pac. J. Public. Health. 2003, 15, 37-40.
[27] Jaeschke. H. Are cultured liver cells the right tool to investigate mechanisms of liver disease or hepatotoxicity? Hepatology. 2003, 38, 1053-1055.
[28] Hinson, J.P.; Khan, M. Dehydroepiandrosterone sulphate (DHEAS) inhibits growth of human vascular endothelial cells. Endocr. Res. 2004, 30, 667-671.
[29] Kon, T.; Tanigawa, T. Singlet oxygen quenching activity of human serum. Redox Rep. 2004, 9, 325-330.
[30] Chen, C.; Krausz, K.W. Serum metabolomics reveals irreversible inhibition of fatty acid beta-oxidation through the suppression of PPARalpha activation as a contributing mechanism of acetaminophen-induced hepatotoxicity. Chem. Res. Toxicol. 2009, 22, 699-707.
[31] Hylemon, P.B.; Zhou, H. Bile acids as regulatory molecules. J. Lipid Res. 2009, 50, 1509-1520.
[32] Perez, M.J.; Briz, O. Bile-acid-induced cell injury and protection. World J. Gastroenterology. 2009, 15, 1677-1689.
[33] Copple, B.L.; Jaeschke, H. Oxidative stress and the pathogenesis of cholestasis. Semin. Liver Dis. 2010, 30, 195-204.
[34] Luo. L.; Schomaker, S. Evaluation of serum bile acid profiles as biomarkers of liver injury in rodents. Toxicol. Sci. 2014, 137, 12-25.
[35] Alnouti, Y.; Csanaky, I.L. Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008, 873, 209-217.
[36] Deo, A.K.; Bandiera, S.M. Biotransformation of lithocholic acid by rat hepatic microsomes: metabolite analysis by liquid chromatography/mass spectrometry. Drug Metab. Dispos. 2008, 36, 442-451.
[37] Rolo, A.P.; Oliveira, P.J. Bile acids affect liver mitochondrial bioenergetics: possible relevance for cholestasis therapy. Toxicol. Sci. 2000, 57, 177-185.
[38] Javitt, N.B.; Emerman, S. Effect of sodium taurolithocholate on bile flow and bile acid exeretion. J. Clin. Invest. 1968, 47, 1002.
[39] Fischer, C.; Cooper, N.; Rothschild, M.; Mosbach, E. Effect of dietary chenodeoxycholic acid and lithocholic acid in the rabbit. Dig. Dis. Sci. 1974, 19, 877-886.
[40] Delzenne, N.M.; Calderon, P.B. Comparative hepatotoxicity of cholic acid, deoxycholic acid and lithocholic acid in the rat: in vivo and in vitro studies. Toxicol. Lett. 1992, 61, 291-304.
[41] Palmer, A. Heywood, R. Pathological changes in the rhesus fetus associated with the oral administration of chenodeoxycholic acid. Toxicology. 1974, 2, 239-246.
[42] Dyrszka, H.; Salen, G. Pathological changes in the rhesus fetus associated with the oral administration of chenodeoxycholic acid. Gastroenterology. 1976, 70, 93.
[43] Song, P.; Zhang, Y. Dose-response of five bile acids on serum and liver bile Acid concentrations and hepatotoxicty in mice. Toxicol. Sci. 2011, 123, 359-367.
[44] Woolbright, B.L.; McGill, M.R. Acute Liver Failure Study Group. Glycodeoxycholic acid levels as prognostic biomarker in acetaminophen-induced acute liver failure patients. Toxicol. Sci. 2014, 142, 436-444.
[45] Rodrigues, C.M.; Stieers, C.L. Tauroursodeoxycholic acid partially prevents apoptosis induced by 3-nitropropionic acid: evidence for a mitochondrial pathway independent of the permeability transition. J. Neurochem. 2000, 75, 2368-2379.
[46] Trauner, M.; Boyer, J.L. Bile salt transporters: molecular characterization, function, and regulation. Physiol. Rev. 2003, 83, 633-671.
[47] Lorbek, G.; Lewinska, M. Cytochrome P450s in the synthesis of cholesterol and bile acids--from mouse models to human diseases. FEBS J. 2012, 279, 1516-1533.
[48] Trottier, J.; Białek, A. Profiling circulating and urinary bile acids in patients with biliary obstruction before and after biliary stenting. PLoS One. 2011, 6, e22094. |