[1] Teng, Y.; Liu, R.; Li, C.; Xia, Q.; Zhang, P. The interaction between 4-aminoantipyrine and bovine serum albumin: Multiple spectroscopic and molecular docking investigations. J. Hazard. Mater. 2011, 190, 574–581.
[2] Katsaounos, C.Z.; Paleologos, E.K.; Giokas, D.L.; Karayannis, M.I. The 4-aminoantipyrine method revisited: Determination of trace phenols bymicellar assisted preconcentration, intern. J. Envir. Anal. Chem. 2003, 83, 507–514.
[3] Mascharak, P.K. Structural and functional models of nitrile hydratase. Coord. Chem. Rev. 2002, 225, 201–214.
[4] Vladimir, I.M.; Alexey, V.T.; Alexander, D.D.; Vladimir, A.B. Tautomeric Schiff bases: Iono-, solvato-, thermo- and photochromism. J. Mol. Struct. 2011, 998, 179–191.
[5] Yue, T.; Rutao, L.; Chao. L.; Hao, Z. Effect of 4-amino-antipyrine on oxidative stress induced by glutathione depletion in single human erythrocytes using a microfluidic device together with fluorescence imaging. J. Hazard. Mater. 2011, 192, 1766–1771.
[6] Van Staden, J.F.; Beyene, N.W.; Stefan, R.I.; Aboul-Enein, H.Y. Sequential injection spectrophotometric determination of ritodrine hydrochloride using 4-aminoantipyrine. J. Talan. 2005, 68, 401–405.
[7] Ndhlala, A.R.; Amoo, S.O.; Ncube, B.; Moyo, M.; Nair, J.J.; Staden, J.V. Antibacterial, Antifungal, and Antiviral Activities of African Medicinal Plants. Med. Plant Res. Afr. 2013, 621–660.
[8] Teanpaisan, R.; Kawsud, P.; Pahumunto, N. Screening for antibacterial and antibio fi lm activity in Thai medicinal plant extracts against oral microorganisms. J. Tradit. Chin. Med. Sci. 2017, 7, 172–177.
[9] Stephen, C.; Gezelle, J.De.; Robertson, M.; Robertson, K. Antibacterial activity of medicinal plants from The Physicians of Myddvai. J. Ethnopharmacol. 2017, 203, 171–181.
[10] Vahid, S.; Iran, S. A new Schiff base compound N,N′-(2,2dimetylpropane) bis(dihydroxylacetophenone): Synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra. J. Mol. Bio. Spectrosc. 2011, 1, 144–150.
[11] Madhavan, S.N.; Dasan, A.; Raphael, S.J. Synthesis, characterization, antifungal, antibacterial and DNA cleavage studies of some heterocyclic Schiff base metal complexes. J. Sau. Chem. Societ. 2012, 1, 83–88.
[12] Santosh, K.; Niranjan, M.S.; Chaluvaraju, K.C.; Jamakhandi, C.M.; Dayanand, K. Synthesis and Antimicrobial Study of Some Schiff Bases of Sulfonamides. J. Curr. Pharm. Res. 2010, 01, 39–42.
[13] Przybylski, P.; Huczynski, A.; Pyta, K.; Brzezinski, B.; Bartl, F. Biological Properties of Schiff Bases and Azo Derivatives of Phenols. Org. Chem. 2009, 25, 124–148.
[14] Zhao, G.; Feng, Y.; Wen, Y. Syntheses, Crystal Structures and Kinetic Mechanisms of Thermal Decomposition of Rare Earth Complexes with Schiff Base Derived from o-Vanillin and p-Toluidine. J. Rare Ear. 2006, 50, 268–275.
[15] Eugene, H.; Konstantina, Y.; Spyros, D.C.; Anastasia, P.; Mavridis, M. J. Supramolecular control of photochromism in a β-cyclodextrin/Schiff base system. Photochem. Photobio. A: Chem. 2011, 3, 293–298.
[16] Kasthuri, J.; Santhanalakshmi, J.; Rajendiran, N. Platinum nanoparticle catalyzed coupling of phenol derivatives with 4-aminoantipyrine in aqueous medium, Transit. J. Met. Chem. 2008, 33, 899–905.
[17] Mani, S.; Sukanya, R.; Shen-Ming, C.; Bose, D. Synthesis of rose like structured LaCoO3 assisted functionalized carbon nanofiber nanocomposite for efficient electrochemical detection of anti-inflammatory drug 4-aminoantipyrine. J. Electrochem. Act. 2018, 260, 571–581.
[18] Manjunath, M.; Kulkarni, A.D.; Bagihalli, G.B.; Malladi, S.; Patil, S.A. Bio-important antipyrine derived Schiff bases and their transition metal complexes: synthesis, spectroscopic characterization, antimicrobial, anthelmintic and DNA cleavage investigation. J. Mol. Struct. 2017, 1127, 314–321.
[19] Ipsita, M.; Jyotsna, M. Aminoantipyrine Derivatives Derived from Betti-type Reaction, ISRN Organic Chemistry. ISRN Org. Chem. 2014, https://doi.org/10.1155/2014/639392.
[20] Lang, A.; Hatscher, C.; Wiegert, C.; Kuhl, P. Protease-catalysed coupling of Nprotected amino acids and peptides with 4-aminoantipyrine. Amino Acids. 2009, 36, 333–340.
[21] Katsaounos, C.Z.; Paleologos, E.K.; Giokas, D.L.; Karayannis, M.I. The 4-aminoantipyrine method revisited: Determination of trace phenols bymicellar assisted preconcentration. J. Environ. Anal. Chem. 2003, 83, 507–514.
[22] Raafat, M.I.; Abdalla, M.K.; Helen, F.R. UV-vis, IR and 1H NMR spectroscopic studies of some Schiff bases derivatives of 4-aminoantipyrine. J. Mol. Bio. Spectrosc. 2005, 62, 621–629.
[23] Mirta, R.; Krunoslav, U.; Ivan, H.; Nikola, B.; Momir, M.; Ivica, Đ.; Zoran, K.; Robin, S.S.; Robert, E.D.; Vladislav, T. Desmotropy, Polymorphism, and Solid-State Proton Transfer: Four Solid Forms of an Aromatic o-Hydroxy Schiff Base. J. Asian Chem. Ed. Societ. 2012, 18, 5620–5631.
[24] Ja, M.H.; Jae, K.J.; Hong, Y.K.; Sangdoo, A.; Suk-Kyu, C. Colorimetric signaling of Cu(II) ions by oxidative coupling of anilines with 4-aminoantipyrine. J. Tetrahedron. Lett. 2015, 56, 5393–5396.
[25] Rozwadowski, Z. NMR Spectroscopy of Optically Active Schiff Bases. Annu. Rep. NMR Spectrosc. 2011, 74, 125–180.
[26] Gehad, G.M.; Zayed, M.A.; Nour El-Dien, F.A.; El-Nahas, R.G. UV-Vis, magnetic and thermal characterization of chelates of some catecholamines and 4-aminoantipyrine with Fe(III) and Cu(I). Spectrochim. Acta. A. 2004, 60, 1775–1781.
[27] Raman, N.; Sobha, S.; Selvaganapathy, M.; Mahalakshmi, R. DNA binding mode of novel tetradentate amino acid based 2-hydroxybenzylidene-4-aminoantipyrine complexes. Mol. Biomolec. Spectrosc. Act. 2012, 96, 698–708.
[28] Tanaka, M.S. Antibacterial properties of a new isoflavonoid from Erythrina poeppigiana against methicillin-resistant Staphylococcus aureus. J. Phytomed. 2004, 4, 331–337.
[29] Manjula, B.; Antony, S.A.; Dhanaraj, C.J.; Nadu, T.; Nadu, T. Synthesis, Spectral Characterization, and Antimicrobial Activities of Schiff Base Complexes Derived. J. Spectro. Lett. 2014, 47, 518–526.
[30] Wayne, PA. Reference method for broth dilution Antifungal Susceptibility testing of Filamentous fungi; Approved Standard. Vol 28. 2nd ed. USA: CLSI. 2008, M38-A2.
[31] Animesh, S.; Arnab, B.; Sisir, L.; Avishek, B.; Subhra, K.M.; Debasis, D. Rhodamine-Based Fluorescent Probe for Al3+ through Time-Dependent PET–CHEF–FRET Processes and Its Cell Staining Application. J. Anal. Chem. 2013, 85, 1778−1783.
[32] Wojciech, S.; Bohdan, K.; Anna, S.; Beata, K.; Eugeniusz, G.; Dorota, Z.; Anna, W.; Tadeusz, O. Structure investigation of intramolecular hydrogen bond in some substituted salicylaldehydes and 4-aminoantipyrine derivatives in solution and in the solid state. Spectrochim. Acta. A: Molec. Biomol. Spectro. 2013, 109, 47–54.
[33] Swaminathana, J.; Ramalingam, M.; Sethuramana, V.; Sundaraganesan, N.; Sebastian, S. Vibrational spectroscopic studies and DFT calculations of 4-aminoantipyrine. J. Spectrochim. Acta. A. 2009, 73, 593–600.
[34] Miller, R.A.; Walker, R.D.; Carson, J.; Coles, M.; Coyne, R.; Dalsgaard, I.; Gieseker, C.; Hsu, H.M.; Mathers, J.J.; Papapetropoulou, M.; Petty, B.; Teitzel, C.; Reimschuessel, R. Standardization of a broth microdilution susceptibility testing method to determine minimum inhibitory concentrations of aquatic bacteria. J. Inter-Res. DAO. 2005, 3, 211–222.
[35] Raman, N.; Sobha, S.; Selvaganapathy, M.; Mahalakshmi, R. DNA binding mode of novel tetradentate amino acid based 2-hydroxybenzylidene-4-aminoantipyrine complexes. Spectrochim. Acta. A: Molec. Biomol. Spectro. 2012, 96, 698–708.
[36] Shuang, W.; Zhen, X.; Qian, W.; Zhixia, H.; Hongping, L. Mechanism research on the pyrolysis of seaweed polysaccharides by Py-GC/MS and subsequent density functional theory studies. J. Anal. Appl. Pyrolys. 2017, 126, 118–131. |