Journal of Chinese Pharmaceutical Sciences ›› 2025, Vol. 34 ›› Issue (10): 943-953.DOI: 10.5246/jcps.2025.10.070
• Original articles • Previous Articles
Yufang Sun1,#, Yingli Xu1,#, Hualong Yu2, Shuxiang Song1,*(
)
Received:2025-04-24
Revised:2025-05-20
Accepted:2025-06-11
Online:2025-11-03
Published:2025-11-03
Contact:
Shuxiang Song
About author:# These authors contributed equally to this work.
Supporting:
Yufang Sun, Yingli Xu, Hualong Yu, Shuxiang Song. Application of nano-flow cytometry for the detection of extracellular vesicles and lipid nanoparticles[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(10): 943-953.
| [1] |
Hou, X.C.; Zaks, T.; Langer, R.; Dong, Y.Z. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 6, 1078–1094.
|
| [2] |
Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; Lin, K.P.; Vita, G.; Attarian, S.; Planté-Bordeneuve, V.; Mezei, M.M.; Campistol, J.M.; Buades, J.; Brannagan, T.H. III, Kim, B.J.; Oh, J.; Parman, Y.; Sekijima, Y.; Hawkins, P.N.; Solomon, S.D.; Polydefkis, M.; Dyck, P.J.; Gandhi, P.J.; Goyal, S.; Chen, J.H.; Strahs, A.L.; Nochur, S.V.; Sweetser, M.T.; Garg, P.P.; Vaishnaw, A.K.; Gollob, J.A.; Suhr, O.B. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 2018, 379, 11–21.
|
| [3] |
Baden, L.R., El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; McGettigan, J.; Khetan, S.; Segall, N.; Solis, J.; Brosz, A.; Fierro, F.; Schwartz, H.; Neuzil, K.; Corey, L.; Gilbert, P.; Janes, H.; Follmann, D.; Marovich, M.; Mascola, J.; Polakowski, L.; Ledgerwood, J.; Graham, B.S.; Bennett, H.; Pajon, R.; Knightly, C.; Leav, B.; Deng, W.P.; Zhou, H.H.; Han, S.; Ivarsson, M.; Miller, J.; Zaks, T. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2020, 384, 403–416.
|
| [4] |
Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W.V.; Cooper, D.; Frenck, R.W. Jr, Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Jansen, K.U.; Gruber, W.C. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615.
|
| [5] |
Wang, C.; Zhang, Y.B.; Dong, Y.Z. Lipid nanoparticle-mRNA formulations for therapeutic applications. Acc. Chem. Res. 2021, 54, 4283–4293.
|
| [6] |
Zhang, Y.B.; Sun, C.Z.; Wang, C.; Jankovic, K.E.; Dong, Y.Z. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 2021, 121, 12181–12277.
|
| [7] |
Yáñez-Mó, M.; Siljander, P. R-M.; Andreu, Z.; Zavec, A.B.; Borràs, F.E.; Buzas, E.I; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; Colas, E.; Cordeiro-da Silva, A.; Fais, S.; Falcon-Perez, J.M; Ghobrial, I.M; Giebel, B.; Gimona, M.; Graner, M.; Gursel, I.; Gursel, M.; Heegaard, N.H.H.; Hendrix, A.; Kierulf, P.; Kokubun, K.; Kosanovic, M.; Kralj-Iglic, V.; Kramer-Albers, E.-M.; Laitinen, S.; Lasser, C.; Lener, T.; Ligeti, E.; Line, A.; Lipps, G.; Llorente, A.; Lotvall, J.; Mancek-Keber, M.; Marcilla, A.; Mittelbrunn, M.; Nazarenko, I.; Nolte-’t H., Esther N.M.; Nyman, T.A; O’Driscoll, L.; Olivan, M.; Oliveira, C.; Pallinger, E.; Del Portillo, H.A.; Reventos, J.; Rigau, M.; Rohde, E.; Sammar, M.; Sanchez-Madrid, F.; Santarem, N; Schallmoser, K.; Ostenfeld, M.S.; Stoorvogel, W.; Stukelj, R.; Van der Grein, S.; Vasconcelos, M H.; Wauben, M.H.M.; De Wever, O. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles. 2015, 4, 27066.
|
| [8] |
Petrovčíková, E.; Vičíková, K.; Leksa, V. Extracellular vesicles–biogenesis, composition, function, uptake and therapeutic applications. Biologia. 2018, 73, 437–448.
|
| [9] |
Elsharkasy, O.M.; Nordin, J.Z.; Hagey, D.W.; de Jong, O.G.; Schiffelers, R.M.; EL Andaloussi, S.; Vader, P. Extracellular vesicles as drug delivery systems: Why and how? Adv. Drug Deliv. Rev. 2020, 159, 332–343.
|
| [10] |
Witwer, K.W.; Wolfram, J. Extracellular vesicles versus synthetic nanoparticles for drug delivery. Nat. Rev. Mater. 2021, 6, 103–106.
|
| [11] |
Cheng, L.; Hill, A.F. Therapeutically harnessing extracellular vesicles. Nat. Rev. Drug Discov. 2022, 21, 379–399.
|
| [12] |
Gupta, D.; Wiklander, O.P.B.; Görgens, A.; Conceição, M.; Corso, G.; Liang, X.M.; Seow, Y.; Balusu, S.; Feldin, U.; Bostancioglu, B.; Jawad, R.; Mamand, D.R.; Lee, Y.X.F.; Hean, J.; Mäger, I.; Roberts, T.C.; Gustafsson, M.; Mohammad, D.K.; Sork, H.; Backlund, A.; Lundin, P.; de Fougerolles, A.; Edvard Smith, C.I.; Wood, M.J.A.; Vandenbroucke, R.E.; Nordin, J.Z.; El-Andaloussi, S. Amelioration of systemic inflammation via the display of two different decoy protein receptors on extracellular vesicles. Nat. Biomed. Eng. 2021, 5, 1084–1098.
|
| [13] |
Herrmann, I.K.; Wood, M.J.A.; Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 2021, 16, 748–759.
|
| [14] |
Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science. 2020, 367, eaau6977.
|
| [15] |
Möller, A.; Lobb, R.J. The evolving translational potential of small extracellular vesicles in cancer. Nat. Rev. Cancer. 2020, 20, 697–709.
|
| [16] |
van Dommelen, S.M.; Vader, P.; Lakhal, S.; Kooijmans, S.A.A.; van Solinge, W.W.; Wood, M.J.A.; Schiffelers, R.M. Microvesicles and exosomes: Opportunities for cell-derived membrane vesicles in drug delivery. J. Control. Release. 2012, 161, 635–644.
|
| [17] |
Semchenko, E.A.; Tan, A.; Borrow, R.; Seib, K.L. The serogroup B meningococcal vaccine bexsero elicits antibodies to neisseria gonorrhoeae. Clin. Infect. Dis. 2019, 69, 1101–1111.
|
| [18] |
He, L.N.; Ozdemir, S.K.; Zhu, J.G.; Kim, W.; Yang, L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol. 2011, 6, 428–432.
|
| [19] |
Tang, V.A.; Renner, T.M.; Fritzsche, A.K.; Burger, D.; Langlois, M.A. Single-particle discrimination of retroviruses from extracellular vesicles by nanoscale flow cytometry. Sci. Rep. 2017, 7, 17769.
|
| [20] |
Tang, V.A.; Renner, T.M.; Varette, O.; Le Boeuf, F.; Wang, J.H.; Diallo, J.S.; Bell, J.C.; Langlois, M.A. Single-particle characterization of oncolytic vaccinia virus by flow virometry. Vaccine. 2016, 34, 5082–5089.
|
| [21] |
Welsh, J.A.; Van Der Pol, E.; Arkesteijn, G.J.A.; Bremer, M; Brisson, A.; Coumans, F.; Dignat-George, F.; Duggan, E.; Ghiran, I.; Giebel, B.; Görgens, A.; Hendrix, A.; Lacroix, R.; Lanniga, J.; Libregtse, S.F.W.M.; Lozano-Andrés, E.; Morales-Kastresana, A.; Robert, S.; De Rond, L.; Tertel, T.; Tigges, J.; De Wever, O.; Yan, X.M.; Nieuwland, R.; Wauben, M.H.M..; Nolan, J.P.; Jones, J.C. MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J. Extracell. Vesicles. 2020, 9, 1713526.
|
| [22] |
Van Der POL, E.; Van GEMERT, M.J.C.; Sturk, A.; Nieuwland, R.; Van LEEUWEN, T.G. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J. Thromb. Haemost. 2012, 10, 919–930.
|
| [23] |
Stoner, S.A.; Duggan, E.; Condello, D.; Guerrero, A.; Turk, J.R.; Narayanan, P.K.; Nolan, J.P. High sensitivity flow cytometry of membrane vesicles. Cytom. Part A. 2016, 89, 196–206.
|
| [24] |
Shapiro H.M. Practical flow cytometry. 4th ed. New Jersey: John Wiley & Sons, Inc., 2003, 681.
|
| [25] |
Nolan, J.P. Flow cytometry of extracellular vesicles: potential, pitfalls, and prospects. Curr. Protoc Cytom. 2015, 73, 13.14.1–13.14.16.
|
| [26] |
Wang, L.; Hoffman, R.A. Standardization, calibration, and control in flow cytometry. Curr. Protoc Cytom. 2017, 79, 1.3.1–1.3.27.
|
| [27] |
Morales-Kastresana, A.; Musich, T.A.; Welsh, J.A.; Telford, W.; Demberg, T.; Wood, J.C.S.; Bigos, M.; Ross, C.D.; Kachynski, A.; Dean, A.L.; Felton, E.J.; Van Dyke, J.; Tigges, J.; Toxavidis, V.; Parks, D.R.; Overton, W.R.; Kesarwala, A.H.; Freeman, G.J.; Rosner, A.; Perfetto, S.P.; Pasquet, L.; Terabe, M.; McKinnon, K.; Kapoor, V.; Trepel, J.B.; Puri, A.N.; Kobayashi, H.; Yung, B.; Chen, X.Y.; Guion, P.; Choyke, P.; Knox, S.J.; Ghiran, I.; Robert-Guroff, M.; Berzofsky, J.A.; Jones, J.C. High-fidelity detection and sorting of nanoscale vesicles in viral disease and cancer. J. Extracell. Vesicles. 2019, 8, 1597603.
|
| [28] |
Nolan, J.P.; Stoner, S.A. A trigger channel threshold artifact in nanoparticle analysis. Cytom. Part A. 2013, 83A, 301–305.
|
| [29] |
Libregts, S.F.W.M.; Arkesteijn, G.J.A.; Németh, A.; Nolte-’T Hoen, E.N.M.; Wauben, M.H.M. Flow cytometric analysis of extracellular vesicle subsets in plasma: impact of swarm by particles of non-interest. J. Thromb. Haemost. 2018, 16, 1423–1436.
|
| [30] |
van der Vlist, E.J.; Nolte-’t Hoen, E.N.M.; Stoorvogel, W.; Arkesteijn, G.J.A.; Wauben, M.H.M. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat. Protoc. 2012, 7, 1311–1326.
|
| [31] |
Nielsen, M.H.; Beck-Nielsen, H.; Andersen, M.N.; Handberg, A. A flow cytometric method for characterization of circulating cell-derived microparticles in plasma. J. Extracell. Vesicles. 2014, 3, 20795.
|
| [32] |
Rousseau, M.; Belleannee, C.; Duchez, A.C.; Cloutier, N.; Levesque, T.; Jacques, F.; Perron, J.; Nigrovic, P.A.; Dieude, M.; Hebert, M.J.; Gelb, M.H.; Boilard, E. Detection and quantification of microparticles from different cellular lineages using flow cytometry. evaluation of the impact of secreted phospholipase A2 on microparticle assessment. PLoS One. 2015, 10, e0116812.
|
| [33] |
Robert, S.; Poncelet, P.; Lacroix, R.; Arnaud, L.; Giraudo, L.; Hauchard, A.; Sampol, J.; DIGNAT-GEORGE, F. Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies? J. Thromb. Haemost. 2009, 7, 190–197.
|
| [34] |
Jayachandran, M.; Litwiller, R.D.; Owen, W.G.; Heit, J.A.; Behrenbeck, T.; Mulvagh, S.L.; Araoz, P.A.; Budoff, M.J.; Harman, S.M.; Miller, V.M. Characterization of blood borne microparticles as markers of premature coronary calcification in newly menopausal women. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H931–H938.
|
| [35] |
Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Der Phys. 1908, 330, 377–445.
|
| [1] | Datong Gao, Meng Lin, Yiwei Peng, Jiajia Li, Yiliang Yang, Yulu Teng, Siyu Chen, Wen Sun, Zinan Wu, Quan Yuan, Zhenzhen Yang, Yanxia Zhou, Xinru Li, Xianrong Qi. Polymer-lipid nanoparticles enhance liver-targeted delivery of therapeutic base editor plasmid for the treatment of hereditary tyrosinemia type 1 (HT-1) [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(3): 189-200. |
| [2] | Pei-Ran Zhang, Ying-Feng Tu, Shuo Wang, Yi-Hui Wang, Ying Xie*, Miao Li*, Yi-Guang Jin. Preparation and characterization of budesonide-loaded solid lipid nanoparticles for pulmonary delivery [J]. , 2011, 20(4): 390-396. |
| [3] |
Hui Sun, Xian-Hua Zhang, Shuo Wang, Ying-Feng Tu, Rong-Sheng Zhao*, Ying Xie* .
Preparation and characterization of oleanolic acid-loaded solid lipid nanoparticles for oral administration [J]. , 2011, 20(3): 259-265. |
| [4] | LIU Wei, ZHU Yao-liang, CHEN Hua-bing, YANG Xiang-liang*. Characteristics and Transdermal Drug Delivery of Triamcinolone-Acetonide-Acetate-Loaded Solid Lipid Nanoparticles Carbomer Gel [J]. , 2005, 14(1): 18-24. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||