[1] |
Cobbina, E.; Akhlaghi, F. Non-alcoholic fatty liver disease (NAFLD)–pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev. 2017, 49, 197–211.
|
[2] |
Sheka, A.C.; Adeyi, O.; Thompson, J.; Hameed, B.; Crawford, P.A.; Ikramuddin, S. Nonalcoholic steatohepatitis: a review. JAMA. 2020, 323, 1175–1183.
|
[3] |
Leng, Y.R.; Zhang, M.H.; Luo, J.G.; Zhang, H. Pathogenesis of NASH and promising natural products. Chin. J. Nat. Med. 2021, 19, 12–27.
|
[4] |
Bessone, F.; Razori, M.V.; Roma, M.G. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol. Life Sci. 2019, 76, 99–128.
|
[5] |
Ipsen, D.H.; Lykkesfeldt, J.; Tveden-Nyborg, P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol. Life Sci. 2018, 75, 3313–3327.
|
[6] |
Musso, G.; Gambino, R.; Cassader, M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog. Lipid Res. 2013, 52, 175–191.
|
[7] |
Alves-Bezerra, M.; Cohen, D.E. Triglyceride metabolism in the liver. Compr. Physiol. 2018, 8, 1–22.
|
[8] |
Chen, X.Q.; Peng, B.; Jiang, H.M.; Zhang, C.X.; Li, H.Y.; Li, Z.Y. Salvianolic acid B alleviates oxidative stress in non-alcoholic fatty liver disease by mediating the SIRT3/FOXO1 signaling pathway. J. Chin. Pharm. Sci. 2022, 31, 698–710.
|
[9] |
Kolodziejczyk, A.A.; Zheng, D.P.; Shibolet, O.; Elinav, E. The role of the microbiome in NAFLD and NASH. EMBO Mol. Med. 2019, 11, e9302.
|
[10] |
Li, H.; Yu, X.H.; Ou, X.; Ouyang, X.P.; Tang, C.K. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog. Lipid Res. 2021, 83, 101109.
|
[11] |
Li, R.Q.; Liu, Y.; Shi, J.J.; Yu, Y.T.; Lu, H.F.; Yu, L.; Liu, Y.Q.; Zhang, F.X. Diosgenin regulates cholesterol metabolism in hypercholesterolemic rats by inhibiting NPC1L1 and enhancing ABCG5 and ABCG8. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipds. 2019, 1864, 1124–1133.
|
[12] |
Plösch, T.; van der Veen, J.N.; Havinga, R.; Huijkman, N.C.A.; Bloks, V.W.; Kuipers, F. Abcg5/Abcg8-independent pathways contribute to hepatobiliary cholesterol secretion in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 291, G414–G423.
|
[13] |
Yu, X.H.; Qian, K.; Jiang, N.; Zheng, X.L.; Cayabyab, F.S.; Tang, C.K. ABCG5/ABCG8 in cholesterol excretion and atherosclerosis. Clin. Chim. Acta. 2014, 428, 82–88.
|
[14] |
Jiang, Z.Y.; Parini, P.; Eggertsen, G.; Davis, M.A.; Hu, H.; Suo, G.J.; Zhang, S.D.; Rudel, L.L.; Han, T.Q.; Einarsson, C. Increased expression of LXR alpha, ABCG5, ABCG8, and SR-BI in the liver from normolipidemic, nonobese Chinese gallstone patients. J. Lipid Res. 2008, 49, 464–472.
|
[15] |
Zhao, J.J.; Wang, Z.T.; Xu, D.P.; Sun, X.L. Advances on cyclocarya paliurus polyphenols: extraction, structures, bioactivities and future perspectives. Food Chem. 2022, 396, 133667.
|
[16] |
Qiu, M.; Peng, J.; Deng, H.; Chang, Y.Y.; Hu, D.; Pan, W.D.; Wu, H.Q.; Xiao, H.T. The leaves of Cyclocarya paliurus: a functional tea with preventive and therapeutic potential of type 2 diabetes. Am. J. Chin. Med. 2022, 50, 1447–1473.
|
[17] |
Jiang, C.H.; Wang, Q.Q.; Wei, Y.J.; Yao, N.; Wu, Z.F.; Ma, Y.L.; Lin, Z.; Zhao, M.; Che, C.T.; Yao, X.M.; Zhang, J.; Yin, Z.Q. Cholesterol-lowering effects and potential mechanisms of different polar extracts from Cyclocarya paliurus leave in hyperlipidemic mice. J. Ethnopharmacol. 2015, 176, 17–26.
|
[18] |
Yang, Z.W.; Wang, J.; Li, J.G.; Xiong, L.; Chen, H.; Liu, X.; Wang, N.; Ouyang, K.H.; Wang, W.J. Antihyperlipidemic and hepatoprotective activities of polysaccharide fraction from Cyclocarya paliurus in high-fat emulsion-induced hyperlipidaemic mice. Carbohydr. Polym. 2018, 183, 11–20.
|
[19] |
Santos, J.P.M.D.; Maio, M.C.; Lemes, M.A.; Laurindo, L.F.; Haber, J.F.D.S.; Bechara, M.D.; Prado, P.S.D.; Jr, Rauen, E.C.; Costa, F.; Pereira, B.C.A.; Flato, U.A.P.; Goulart, R.A.; Chagas, E.F.B.; Barbalho, S.M. Non-alcoholic steatohepatitis (NASH) and organokines: What is now and what will be in the future. Int. J. Mol. Sci. 2022, 23, 498.
|
[20] |
Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; Yeh, M.; McCullough, A.J.; Sanyal, A.J.; Network, N.S.C.R. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005, 41, 1313–1321.
|
[21] |
Fakhoury-Sayegh, N.; Trak-Smayra, V.; Khazzaka, A.; Esseily, F.; Obeid, O.; Lahoud-Zouein, M.; Younes, H. Characteristics of nonalcoholic fatty liver disease induced in wistar rats following four different diets. Nutr. Res. Pract. 2015, 9, 350–357.
|
[22] |
Zhang, Q.Z.; Piao, C.X.; Xu, J.Y.; Jiao, Z.H.; Ge, Y.S.; Liu, X.N.; Ma, Y.J.; Wang, H.B. Comparative study on protective effect of hydrogen rich saline and adipose-derived stem cells on hepatic ischemia-reperfusion and hepatectomy injury in swine. Biomed. Pharmacother. 2019, 120, 109453.
|
[23] |
Guo, Y.H.; Zhao, Q.S.; Cao, L.L.; Zhao, B. Hepatoprotective effect of Gan Kang Yuan against chronic liver injury induced by alcohol. J. Ethnopharmacol. 2017, 208, 1–7.
|
[24] |
You, Z.Q.; Sun, J.Y.; Xie, F.; Chen, Z.Q.; Zhang, S.; Chen, H.; Liu, F.; Li, L.L.; Chen, G.C.; Song, Y.S.; Xuan, Y.X.; Zheng, G.L.; Xin, Y.F. Modulatory effect of fermented papaya extracts on mammary gland hyperplasia induced by estrogen and progestin in female rats. Oxid. Med. Cell Longev. 2017, 2017, 8235069.
|
[25] |
Zhang, Y.H.; Gu, X.J. Expression of CHE, ALB and CHO in patients with hepatitis cirrhosis and the influence of diagnostic efficacy study. Labeling Imm. Clin. 2020, 27, 497–501.
|
[26] |
Li, Y.H.; Yu, S.; Wang, J.J.; Sun, Y.F. Effect of Tiaogan Jiangzhi Drink on liver function and serum TG and TC levels in patients with nonalcoholic steatohepatitis of phlegm-dampness internal resistance type. Guangming J. Chin. Med. 2020, 35, 3511–3513.
|
[27] |
Paththinige, C.S.; Sirisena, N.D.; Dissanayake, V. Genetic determinants of inherited susceptibility to hypercholesterolemia - a comprehensive literature review. Lipids Health Dis. 2017, 16, 103.
|
[28] |
Brownstein, A.J.; Martin, S.S. More accurate LDL-C calculation: externally validated, guideline endorsed. Clin. Chim. Acta. 2020, 506, 149–153.
|
[29] |
Yue, F.; Wang, W.S.; Zhang, P.Y.; Fu, Y. Clinical efficacy of simvastatin and fenofibrate in treatment of mixed hyperlipidemia and their influence on serum TC, LDL-C, TG, and HDL-C levels. Chin. J. Biochem. Drugs. 2014, 34, 119–121.
|
[30] |
Chait, A. Hypertriglyceridemia. Endocrin. Metab. Clin. 2022, 51, 539–555.
|
[31] |
Luo, J.; Yang, H.Y.; Song, B.L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 2020, 21, 225–245.
|
[32] |
Yu, X.H.; Qian, K.; Jiang, N.; Zheng, X.L.; Cayabyab, F.S.; Tang, C.K. ABCG5/ABCG8 in cholesterol excretion and atherosclerosis. Clin. Chim. Acta. 2014, 428, 82–88.
|
[33] |
Farhat, D.; Rezaei, F.; Ristovski, M.; Yang, Y.D.; Stancescu, A.; Dzimkova, L.; Samnani, S.; Couture, J.F.; Lee, J.Y. Structural analysis of cholesterol binding and sterol selectivity by ABCG5/G8. J. Mol. Biol. 2022, 434, 167795.
|
[34] |
Van Rooyen, D.M.; Farrell, G.C. SREBP-2: a link between insulin resistance, hepatic cholesterol, and inflammation in NASH. J. Gastroenterol. Hepatol. 2011, 26, 789–792.
|
[35] |
Seedorf, K.; Weber, C.; Vinson, C.; Berger, S.; Vuillard, L.M.; Kiss, A.; Creusot, S.; Broux, O.; Geant, A.; Ilic, C.; Lemaitre, K.; Richard, J.; Hammoutene, A.; Mahieux, J.; Martiny, V.; Durand, D.; Melchiore, F.; Nyerges, M.; Paradis, V.; Provost, N.; Duvivier, V.; Delerive, P. Selective disruption of NRF2-KEAP1 interaction leads to NASH resolution and reduction of liver fibrosis in mice. JHEP Rep. 2023, 5, 100651.
|