[1] |
Shan, N.; Shang, Y.; He, Y.W.; Wen, Z.; Ning, S.W.; Chen, H. Common biomarkers of idiopathic pulmonary fibrosis and systemic sclerosis based on WGCNA and machine learning. Sci. Rep. 2025, 15, 610.
|
[2] |
Nowak, S.; Creuzberg, D.; Theis, M.; Pizarro, C.; Isaak, A.; Pieper, C.C.; Luetkens, J.A.; Skowasch, D.; Sprinkart, A.M.; Kütting, D. Comparing multi-texture fibrosis analysis versus binary opacity-based abnormality detection for quantitative assessment of idiopathic pulmonary fibrosis. Sci. Rep. 2025, 15, 1479.
|
[3] |
Richeldi, L.; Collard, H.R.; Jones, M.G. Idiopathic pulmonary fibrosis. Lancet. 2017, 389, 1941–1952.
|
[4] |
Wolters, P.J.; Collard, H.R.; Jones, K.D. Pathogenesis of idiopathic pulmonary fibrosis. Annu. Rev. Pathol. 2014, 9, 157–179.
|
[5] |
Moss, B.J.; Ryter, S.W.; Rosas, I.O. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu. Rev. Pathol. 2022, 17, 515–546.
|
[6] |
Diamantopoulos, A.; Wright, E.; Vlahopoulou, K.; Cornic, L.; Schoof, N.; Maher, T.M. The burden of illness of idiopathic pulmonary fibrosis: a comprehensive evidence review. Pharmacoeconomics. 2018, 36, 779–807.
|
[7] |
Milman Krentsis, I.; Zheng, Y.X.; Rosen, C.; Shin, S.Y.; Blagdon, C.; Shoshan, E.; Qi, Y.; Wang, J.; Yadav, S.K.; Bachar Lustig, E.; Shetzen, E.; Dickey, B.F.; Karmouty-Quintana, H.; Reisner, Y. Lung cell transplantation for pulmonary fibrosis. Sci. Adv. 2024, 10, eadk2524.
|
[8] |
Wang, H.T.; Sun, K.; Peng, H.; Wang, Y.; Zhang, L. Emerging roles of noncoding RNAs in idiopathic pulmonary fibrosis. Cell Death Discov. 2024, 10, 443.
|
[9] |
Iyer, S.N.; Gurujeyalakshmi, G.; Giri, S.N. Effects of pirfenidone on procollagen gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis 1. J. Pharmacol. Exp. Ther. 1999, 289, 211–218.
|
[10] |
Kreuter, M.; Bonella, F.; Wijsenbeek, M.; Maher, T.M.; Spagnolo, P. Pharmacological treatment of idiopathic pulmonary fibrosis: current approaches, unsolved issues, and future perspectives. Biomed. Res. Int. 2015, 2015, 329481.
|
[11] |
Wollin, L.; Wex, E.; Pautsch, A.; Schnapp, G.; Hostettler, K.E.; Stowasser, S.; Kolb, M. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur. Respir. J. 2015, 45, 1434–1445.
|
[12] |
Li, G.G.; Zhang, Y.W.; Jiang, H.Y.; Wu, X.Y.; Hao, Y.W.; Su, Y.C.; Zou, Y.T.; Xian, W.J.; Wang, F.; Du, Q.Y. PPARG/SPP1/CD44 signaling pathway in alveolar macrophages: Mechanisms of lipid dysregulation and therapeutic targets in idiopathic pulmonary fibrosis. Heliyon. 2025, 11, e41628.
|
[13] |
Scotton, C.J.; Chambers, R.C. Molecular targets in pulmonary fibrosis the myofibroblast in focus. Chest. 2007, 132, 1311–1321.
|
[14] |
Wu, H.J.; Yu, Y.Y.; Huang, H.W.; Hu, Y.C.; Fu, S.L.; Wang, Z.; Shi, M.T.; Zhao, X.; Yuan, J.; Li, J.; Yang, X.Y.; Bin, E.N.; Wei, D.; Zhang, H.B.; Zhang, J.; Yang, C.; Cai, T.; Dai, H.P.; Chen, J.Y.; Tang, N. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell. 2020, 180, 107–121.e17.
|
[15] |
Huang, Y.H.; Hong, W.Q.; Wei, X.W. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J. Hematol. Oncol. 2022, 15, 129.
|
[16] |
Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196.
|
[17] |
Barron, L.; Gharib, S.A.; Duffield, J.S. Lung pericytes and resident fibroblasts busy multitaskers. Am. J. Pathol. 2016, 186, 2519–2531.
|
[18] |
van Meeteren, L.A.; ten Dijke, P. Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res. 2012, 347, 177–186.
|
[19] |
Ricketts, C.R. Dextran sulphate: a synthetic analogue of heparin. Biochem. J. 1952, 51, 129–133.
|
[20] |
Walton, K.W. The biological behaviour of a new synthetic anticoagulant (dextran sulphate) possessing heparin-like properties. Br. J. Pharmacol. Chemother. 1952, 7, 370–391.
|
[21] |
Dextran sulfate as a substitute for heparin. Med. Assoc. J. 1957, 76, 139.
|
[22] |
Jeavons, S.M.; Ricketts, C.R.; Walton, K.W. Duration of anticoagulant effect in relation to urinary excretion of dextran sulphate. Br. Med. J. 1956, 2, 1016–1023.
|
[23] |
Jin, Z.Q.; Liu, Z.Y.; Pan, J.X.; Wang, S.W.; Cui, M.D.; He, C.B.; Lin, M.Y.; Liu, X.H.; Yu, X.; Gong, F.H. FGF20 modulates gut microbiota to mitigate dextran sodium sulfate-induced ulcerative colitis in mouse models. Int. Immunopharmacol. 2024, 142, 113044.
|
[24] |
Zhao, Y.; Ma, Q.; Gao, W.W.; Li, Z.J.; Yu, G.F.; Li, B.; Xu, Y.Y.; Huang, Y.N. Dextran sulfate inhibits proliferation and metastasis of human gastric cancer cells via miR-34c-5p. Heliyon. 2024, 10, e34859.
|
[25] |
Hernandez-Pigeon, H.; Garidou, L.; Delga, H.; Bessou-Touya, S.; Castex-Rizzi, N. 441 Properties of dextran sulfate on anti-redness treatment. J. Investig. Dermatol. 2017, 137, S267.
|
[26] |
Xu, Y.Y.; Wang, X.F.; Huang, Y.N.; Ma, Y.M.; Jin, X.; Wang, H.H.; Wang, J. Inhibition of lysyl oxidase expression by dextran sulfate affects invasion and migration of gastric cancer cells. Int. J. Mol. Med. 2018, 42, 2737–2749.
|
[27] |
Xu, Y.Y.; Jin, X.; Huang, Y.N.; Wang, J.; Wang, X.F.; Wang, H.H. Dextran sulfate inhibition on human gastric cancer cells invasion, migration and epithelial-mesenchymal transformation. Oncol. Lett. 2018, 16, 5041–5049.
|
[28] |
Walton, K.W. Investigation of the toxicity of a series of dextran sulphates of varying molecular weight. Br. J. Pharmacol. Chemother. 1954, 9, 1–14.
|
[29] |
Mutch, A.L.; Yang, J.K.; Ferro, V.; Anitha, A.; Grøndahl, L. Sulfated alginate for biomedical applications. Macromol. Biosci. 2024, 24, e2400237.
|
[30] |
Bi, D.C.; Huang, J.F.; Cao, J.; Yao, L.J.; Guo, W.S.; Zhang, Z.Q.; Wu, Y.; Xu, H.; Hu, Z.L.; Xu, X. Preparation, characterization and immunomodulatory effects of unsaturated sulfated oligoguluronic acid. Carbohydr. Polym. 2023, 301, 120370.
|
[31] |
Arlov, Ø.; Rütsche, D.; Asadi Korayem, M.; Öztürk, E.; Zenobi-Wong, M. Engineered sulfated polysaccharides for biomedical applications. Adv. Funct. Mater. 2021, 31, 2010732.
|
[32] |
Massagué, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 2012, 13, 616–630.
|
[33] |
Kim, K.K.; Sheppard, D.; Chapman, H.A. TGF-β1 signaling and tissue fibrosis. Cold Spring Harb. Perspect. Biol. 2018, 10, a022293.
|
[34] |
Yang, A.D.; Ramsay Camp, E.; Fan, F.; Shen, L.L.; Gray, M.J.; Liu, W.B.; Somcio, R.; Bauer, T.W.; Wu, Y.; Hicklin, D.J.; Ellis, L.M. Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Res. 2006, 66, 46–51.
|
[35] |
Gadbail, A.R.; Chaudhary, M.S.; Sarode, S.C.; Gondivkar, S.M.; Belekar, L.; Mankar-Gadbail, M.P.; Dande, R.; Tekade, S.A.; Yuwanati, M.B.; Patil, S. Ki67, CD105 and α-smooth muscle actin expression in disease progression model of oral submucous fibrosis. J. Investig. Clin. Dent. 2019, 10, e12443.
|
[36] |
Sun, Y.M.; Liu, B.Y.; Xie, J.P.; Jiang, X.F.; Xiao, B.L.; Hu, X.M.; Xiang, J.J. Aspirin attenuates liver fibrosis by suppressing TGF-β1/Smad signaling. Mol. Med. Rep. 2022, 25, 181.
|
[37] |
Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M.; Campbell, K.; Cano, A.; Casanova, J.; Christofori, G.; Dedhar, S.; Derynck, R.; Ford, H.L.; Fuxe, J.; de Herreros, A.G.; Goodall, G.J.; Hadjantonakis, A.K.; Huang, R.Y.J.; Kalcheim, C.; Kalluri, R.; Kang, Y.B.; Khew-Goodall, Y.; Levine, H.; Liu, J.S.; Longmore, G.D.; Mani, S.A.; Massagué, J.; Mayor, R.; McClay, D.; Mostov, K.E.; Newgreen, D.F.; Angela Nieto, M.; Puisieux, A.; Runyan, R.; Savagner, P.; Stanger, B.; Stemmler, M.P.; Takahashi, Y.; Takeichi, M.; Theveneau, E.; Thiery, J.P.; Thompson, E.W.; Weinberg, R.A.; Williams, E.D.; Xing, J.H.; Zhou, B.P.; Sheng, G.J.; International Association, E.M.T. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2020, 21, 341–352.
|