Journal of Chinese Pharmaceutical Sciences ›› 2024, Vol. 33 ›› Issue (12): 1101-1109.DOI: 10.5246/jcps.2024.12.079
• Original articles • Next Articles
Haijuan Gu1,#, Min Yao1,#, Qi Wang2, Lijuan Fan4, Wei Zhang4, Fang He3,*(), Runtao Li2,*(), Hao Zhang1,*()
Received:
2024-06-23
Revised:
2024-08-15
Accepted:
2024-09-28
Online:
2025-01-07
Published:
2025-01-06
Contact:
Fang He, Runtao Li, Hao Zhang
About author:
# These authors contribute equally to this work.
Supported by:
Supporting: /attached/file/20250104/20250104162542_774.pdf
Haijuan Gu, Min Yao, Qi Wang, Lijuan Fan, Wei Zhang, Fang He, Runtao Li, Hao Zhang. Practical and efficient synthesis of myricetin: a scalable approach[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(12): 1101-1109.
[1] |
Park, K.S.; Chong, Y.; Kim, M.K. Myricetin: biological activity related to human health. Appl. Biol. Chem. 2016, 59, 259–269.
|
[2] |
Kang, K.A.; Wang, Z.H.; Zhang, R.; Piao, M.J.; Kim, K.C.; Kang, S.S.; Kim, Y.W.; Lee, J.; Park, D.; Hyun, J.W. Myricetin protects cells against oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways. Int. J. Mol. Sci. 2010, 11, 4348–4360.
|
[3] |
Jomová, K.; Hudecova, L.; Lauro, P.; Simunkova, M.; Alwasel, S.H.; Alhazza, I.M.; Valko, M. A switch between antioxidant and prooxidant properties of the phenolic compounds myricetin, morin, 3',4'-dihydroxyflavone, taxifolin and 4-hydroxy-coumarin in the presence of copper (II) ions: a spectroscopic, absorption titration and DNA damage study. Molecules. 2019, 24, E4335.
|
[4] |
Hou, W.; Hu, S.; Su, Z.; Wang, Q.; Meng, G.; Guo, T.; Zhang, J.; Gao, P. Myricetin attenuates LPS-induced inflammation in RAW 264.7 macrophages and mouse models. Future Med. Chem. 2018, 10, 2253–2264.
|
[5] |
Zhu, S.F.; Yang, C.; Zhang, L.; Wang, S.X.; Ma, M.X.; Zhao, J.C.; Song, Z.Y.; Wang, F.; Qu, X.J.; Li, F.; Li, W.B. Development of M10, myricetin-3-O-β-d-lactose sodium salt, a derivative of myricetin as a potent agent of anti-chronic colonic inflammation. Eur. J. Med. Chem. 2019, 174, 9–15.
|
[6] |
Li, G.; Wang, G.Z.; Si, X.S.; Zhang, X.K.; Liu, W.T.; Li, L.; Wang, J.F. Inhibition of suilysin activity and inflammation by myricetin attenuates Streptococcus suis virulence. Life Sci. 2019, 223, 62–68.
|
[7] |
Singh, P.; Bast, F. Screening and biological evaluation of myricetin as a multiple target inhibitor insulin, epidermal growth factor, and androgen receptor; in silico and in vitro. Invest. New Drugs. 2015, 33, 575–593.
|
[8] |
Ying, X.Z.; Chen, X.W.; Wang, T.; Zheng, W.H.; Chen, L.; Xu, Y.J. Possible osteoprotective effects of myricetin in STZ induced diabetic osteoporosis in rats. Eur. J. Pharmacol. 2020, 866, 172805.
|
[9] |
Yao, Z.X.; Li, C.; Gu, Y.Q.; Zhang, Q.; Liu, L.; Meng, G.; Wu, H.M.; Bao, X.; Zhang, S.M.; Sun, S.M.; Wang, X.; Zhou, M.; Jia, Q.Y.; Song, K.; Li, Z.; Gao, W.N.; Niu, K.J.; Guo, C.J. Dietary myricetin intake is inversely associated with the prevalence of type 2 diabetes mellitus in a Chinese population. Nutr. Res. 2019, 68, 82–91.
|
[10] |
Matić, S.; Stanić, S.; Bogojević, D.; Vidaković, M.; Grdović, N.; Dinić, S.; Solujić, S.; Mladenović, M.; Stanković, N.; Mihailović, M. Methanol extract from the stem of Cotinus coggygria Scop., and its major bioactive phytochemical constituent myricetin modulate pyrogallol-induced DNA damage and liver injury. Mutat. Res. Toxicol. Environ. Mutagen. 2013, 755, 81–89.
|
[11] |
Kim, H.Y.; Park, S.Y.; Choung, S.Y. Enhancing effects of myricetin on the osteogenic differentiation of human periodontal ligament stem cells via BMP-2/Smad and ERK/JNK/p38 mitogen-activated protein kinase signaling pathway. Eur. J. Pharmacol. 2018, 834, 84–91.
|
[12] |
Jiang, M.; Zhu, M.L.; Wang, L.; Yu, S.W. Anti-tumor effects and associated molecular mechanisms of myricetin. Biomed. Pharmacother. 2019, 120, 109506.
|
[13] |
Li, M.J.; Chen, J.L.; Yu, X.F.; Xu, S.; Li, D.F.; Zheng, Q.S.; Yin, Y.C. Myricetin suppresses the propagation of hepatocellular carcinoma via down-regulating expression of YAP. Cells. 2019, 8, 358.
|
[14] |
Basabe, P.; de Román, M.; Marcos, I.S.; Diez, D.; Blanco, A.; Bodero, O.; Mollinedo, F.; Sierra, B.G.; Urones, J.G. Prenylflavonoids and prenyl/alkyl-phloroacetophenones: Synthesis and antitumour biological evaluation. Eur. J. Med. Chem. 2010, 45, 4258–4269.
|
[15] |
Knickle, A.; Fernando, W.; Greenshields, A.L.; Vasantha Rupasinghe, H.P.; Hoskin, D.W. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide. Food Chem. Toxicol. 2018, 118, 154–167.
|
[16] |
Kim, M.E.; Ha, T.K.; Yoon, J.H.; Lee, J.S. Myricetin induces cell death of human colon cancer cells via BAX/BCL2-dependent pathway. Anticancer Res. 2014, 34, 701–706.
|
[17] |
Ma, L.; Cao, X.Q.; Wang, H.Y.; Lu, K.; Wang, Y.; Tu, C.H.; Dai, Y.J.; Meng, Y.Y.; Li, Y.Y.; Yu, P.; Man, S.L.; Diao, A.P. Discovery of myricetin as a potent inhibitor of human flap endonuclease 1, which potentially can be used as sensitizing agent against HT-29 human colon cancer cells. J. Agric. Food Chem. 2019, 67, 1656–1665.
|
[18] |
Zhang, Q.Y.; Liu, J.; Liu, B.; Xia, J.; Chen, N.P.; Chen, X.F.; Cao, Y.; Zhang, C.; Lu, C.J.; Li, M.Y.; Zhu, R.Z. Dihydromyricetin promotes hepatocellular carcinoma regression via a p53 activation-dependent mechanism. Sci. Rep. 2014, 4, 4628.
|
[19] |
Ye, C.; Zhang, C.; Huang, H.; Yang, B.; Xiao, G.G.; Kong, D.P.; Tian, Q.Q.; Song, Q.X.; Song, Y.J.; Tan, H.S.; Wang, Y.; Zhou, T.; Zi, X.Y.; Sun, Y.H. The natural compound myricetin effectively represses the malignant progression of prostate cancer by inhibiting PIM1 and disrupting the PIM1/CXCR4 interaction. Cell Physiol. Biochem. 2018, 48, 1230–1244.
|
[20] |
Cui, W.; Zhang, J.; Wang, Q.; Gao, K.; Zhang, W.; Yang, J. A novel synthesis of naringenin and related flavanones. J. Chem. Res. 2014, 38, 686–689.
|
[21] |
(a) Boers, F.; Deng, B.L.; Lemière, G.; Lepoivrea, J.; Groota, A.D.; Donunissea, R.; Vlietinck, A.J. An Improved Synthesis of the Anti-Picornavirus Flavone 3-O-Methylquercetin. Arch Pharm. 1997, 330, 313–316. (b) Dorman, G.; Prestwich, G.D. Benzophenone Photophores in Biochemistry. Biochemistry. 1994, 33, 5661–5673. (c) Fleming, S.A. Chemical reagents in photoaffinity labeling. Tetrahedron. 1995, 51, 12479–12520.
|
[22] |
Yato, M.; Ohwada, T.; Shudo, K. Requirements for Houben-Hoesch and Gattermann reactions. Involvement of diprotonated cyanides in the reactions with benzene. J. Am. Chem. Soc. 1991, 113, 691–692.
|
[23] |
Tsukayama, M.; Kusunoki, E.; Hossain, M.M.; Kawamura, Y.; Hayashi, S. Microwave-assisted efficient synthesis of polymethoxyacetophenones and natural polymethoxyflavones, and their inhibitory effects on melanogenesis. Heterocycles. 2007, 71, 1589.
|
[24] |
Mateeva, N.N.; Kode, R.N.; Redda, K.K. Synthesis of novel flavonoid derivatives as potential HIV-Integrase inhibitors. J. Heterocycl. Chem. 2002, 39, 1251–1258.
|
[25] |
Sarma, P.N.; Srimannarayana, G.; Subba Rao, N.V. Synthesis of naturally occurring partial methyl ethers of myricetin. Proc. Indian Acad. Sci. Sect. A. 1974, 80, 168–173.
|
[26] |
Korul’kina, L.M.; Shul’ts, E.E.; Zhusupova, G.E.; Abilov, Z.A.; Erzhanov, K.B.; Chaudri, M.I. Biologically active compounds from Limonium Gmelinii and L. Popovii I. Chem. Nat. Compd. 2004, 40, 465–471.
|
[1] | Huijie Lv, Tuo Xv, Jun Peng, Gang Luo, Jianqin He, Sisi Yang, Tiancheng Zhang, Shuidong Feng, Hongyan Ling. Dihydromyricetin improves liver fat deposition in high-fat diet-induced obese mice [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 824-839. |
[2] | Jiuzhou Guo, Yanxing Jia. A concise total synthesis of secoisolariciresinol [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(10): 699-703. |
[3] | Xinyu Fang, Rongrong Wang, Shiwei Sun, Xiaoxiao Liu, Xiaohong Liu, Wei Wang, Yoshihito Okada, Wei Wang. Chemical constituents from the leaves of Cistus parviflorus [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(1): 40-50. |
[4] | Yongfan Ma, Yanxing Jia. Synthetic study toward the total synthesis of fumigaclavines A–D [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(7): 496-503. |
[5] | Yiyi Zhao, Hongzhu Guo, Yougen Chen, Xintong Fu. Simultaneous quantification of flavonol glycosides, terpene lactones, polyphenols and carboxylic acids in Ginkgo biloba leaf extract by UPLC-QTOF-MSE based metabolomic approach [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(11): 789-804. |
[6] | Paruke Aibibula, Zhi Huang, Hongzheng Fu, Yanxing Jia. Asymmetric total synthesis of 3-epi-naucleamide A [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(1): 30-36. |
[7] | Zijie Liu, Youzhen Wu, Gang Liu. Efficient and convenient total synthesis of mycothiol on a large scale [J]. Journal of Chinese Pharmaceutical Sciences, 2015, 24(6): 347-355. |
[8] | Raj K. Keservani, Anil K. Sharma. Flavonoids: emerging trends and potential health benefits [J]. Journal of Chinese Pharmaceutical Sciences, 2014, 23(12): 815-822. |
[9] | Aili Song, Chao Wang, Yanfen Wu, Lidong Zhou . Total synthesis of a hydrated aurone derivative [J]. Journal of Chinese Pharmaceutical Sciences, 2014, 23(10): 688-693. |
[10] | ZHANG Yan-song, ZHANG Qing-ying, WANG Bin, LI Li-ying, ZHAO Yu-ying*. Chemical Constituents from Ampelopsis grossedentata [J]. , 2006, 15(4): 211-214. |
[11] | WU Yan-fen, LU Qiang, Lü Wen, ZHANG Wen-sheng*. Total Synthesis of Anisodine [J]. , 2005, 14(1): 13-17. |
[12] | DOU Yu-ling, QIN Hui-ling, ZHOU Tong-shui, OU Ling, LU Yan-hua*, WEI Dong-zhi** . An Isopropyldioxy Flavonol from Hypericum perforatum L. [J]. , 2004, 13(2): 112-114. |
[13] | Xiao Shen Ji, Yi Miao, Yan Liu, Tao Jin, Peng Song . Improvement for the Synthesis of Centchroman [J]. , 1998, 7(2): 69-71. |
[14] | Wen-Kui Li, Pei-Gen Xiao, Ru-Yi Zhang. Studies on the Chemical Constituents of Epimedium koreanum Nakai and Epimedium wanshanense S.Z.He et Guo [J]. , 1996, 5(2): 109-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||