Journal of Chinese Pharmaceutical Sciences ›› 2024, Vol. 33 ›› Issue (10): 943-964.DOI: 10.5246/jcps.2024.10.068
• Original articles • Previous Articles Next Articles
Qian Deng1, Zining Peng2, Weitian Yan1, Nian Liu2, Fanyu Meng2, Jianmei Yin2, Haozhe Zhang2, Xingqiang Wang1,*(), Jiangyun Peng1,*()
Received:
2024-02-13
Revised:
2024-06-13
Accepted:
2024-09-21
Online:
2024-10-31
Published:
2024-10-31
Contact:
Xingqiang Wang, Jiangyun Peng
Supported by:
Supporting: /attached/file/20241106/20241106132914_760.pdf
Qian Deng, Zining Peng, Weitian Yan, Nian Liu, Fanyu Meng, Jianmei Yin, Haozhe Zhang, Xingqiang Wang, Jiangyun Peng. Elucidating the therapeutic mechanism of Cang Zhu and Huang Bai in rheumatoid arthritis: a comprehensive analysis integrating network pharmacology and GEO data[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(10): 943-964.
[1] |
Smith, M.H.; Berman, J.R. What is rheumatoid arthritis? JAMA. 2022, 327, 94.
|
[2] |
Frazzei, G.; Musters, A.; de Vries, N.; Tas, S.W.; van Vollenhoven, R.F. Prevention of rheumatoid arthritis: a systematic literature review of preventive strategies in at-risk individuals. Autoimmun. Rev. 2023, 22, 103217.
|
[3] |
Radu, A.F.; Bungau, S.G. Management of rheumatoid arthritis: an overview. Cells. 2021, 10, 2857.
|
[4] |
Rubbert-Roth, A.; Szabó, M.Z.; Kedves, M.; Nagy, G.; Atzeni, F.; Sarzi-Puttini, P. Failure of anti-TNF treatment in patients with rheumatoid arthritis: the pros and cons of the early use of alternative biological agents. Autoimmun. Rev. 2019, 18, 102398.
|
[5] |
Ramiro, S.; Gaujoux-Viala, C.; Nam, J.L.; Smolen, J.S.; Buch, M.; Gossec, L.; van der Heijde, D.; Winthrop, K.; Landewé, R. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2013 update of the EULAR recommendations for management of rheumatoid arthritis. Ann. Rheum. Dis. 2014, 73, 529–535.
|
[6] |
Davis, J.S.; Ferreira, D.; Paige, E.; Gedye, C.; Boyle, M. Infectious complications of biological and small molecule targeted immunomodulatory therapies. Clin. Microbiol. Rev. 2020, 33, e00035–e00019.
|
[7] |
Smolen, J.S.; Landewé, R.; Breedveld, F.C.; Buch, M.; Burmester, G.; Dougados, M.; Emery, P.; Gaujoux-Viala, C.; Gossec, L.; Nam, J.; Ramiro, S.; Winthrop, K.; de Wit, M.; Aletaha, D.; Betteridge, N.; Bijlsma, J.W.J.; Boers, M.; Buttgereit, F.; Combe, B.; Cutolo, M.; Damjanov, N.; Hazes, J.M.W.; Kouloumas, M.; Kvien, T.K.; Mariette, X.; Pavelka, K.; van Riel, P.L.C.M.; Rubbert-Roth, A.; Scholte-Voshaar, M.; Scott, D.L.; Sokka-Isler, T.; Wong, J.B.; van der Heijde, D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann. Rheum. Dis. 2014, 73, 492–509.
|
[8] |
Smolen, J.S.; Aletaha, D.; Koeller, M.; Weisman, M.H.; Emery, P. New therapies for treatment of rheumatoid arthritis. Lancet. 2007, 370, 1861–1874.
|
[9] |
Bakheet, S.A.; Ansari, M.A.; Nadeem, A.; Attia, S.M.; Alhoshani, A.R.; Gul, G.; Al-Qahtani, Q.H.; Albekairi, N.A.; Ibrahim, K.E.; Ahmad, S.F. CXCR3 antagonist AMG487 suppresses rheumatoid arthritis pathogenesis and progression by shifting the Th17/Treg cell balance. Cell Signal. 2019, 64, 109395.
|
[10] |
Abd-Allah, A.R.A.; Ahmad, S.F.; Alrashidi, I.; Abdel-Hamied, H.E.; Zoheir, K.M.A.; Ashour, A.E.; Bakheet, S.A.; Attia, S.M. Involvement of histamine 4 receptor in the pathogenesis and progression of rheumatoid arthritis. Int. Immunol. 2014, 26, 325–340.
|
[11] |
Gou, K.J.; Zeng, R.; Ren, X.D.; Dou, Q.L.; Yang, Q.B.; Dong, Y.; Qu, Y. Anti-rheumatoid arthritis effects in adjuvant-induced arthritis in rats and molecular docking studies of Polygonum orientale L. extracts. Immunol. Lett. 2018, 201, 59–69.
|
[12] |
Qindeel, M.; Ullah, M.H.; Fakhar-Ud-Din, Ahmed, N.; Rehman, A.U. Recent trends, challenges and future outlook of transdermal drug delivery systems for rheumatoid arthritis therapy. J. Control. Release. 2020, 327, 595–615.
|
[13] |
Chen, L.G.; Jan, Y.S.; Tsai, P.W.; Norimoto, H.; Michihara, S.; Murayama, C.; Wang, C.C. Anti-inflammatory and antinociceptive constituents of atractylodes japonica koidzumi. J. Agric. Food Chem. 2016, 64, 2254–2262.
|
[14] |
Fujii, A.; Okuyama, T.; Wakame, K.; Okumura, T.; Ikeya, Y.; Nishizawa, M. Identification of anti-inflammatory constituents in Phellodendri Cortex and Coptidis Rhizoma by monitoring the suppression of nitric oxide production. J. Nat. Med. 2017, 71, 745–756.
|
[15] |
Hopkins, A.L. Network pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111.
|
[16] |
Liu, Z.H.; Sun, X.B. Network pharmacology: new opportunity for the modernization of traditional Chinese medicine. Acta Pharm. Sin. 2012, 47, 696–703.
|
[17] |
Yuan, H.D.; Ma, Q.Q.; Cui, H.Y.; Liu, G.C.; Zhao, X.Y.; Li, W.; Piao, G.C. How can synergism of traditional medicines benefit from network pharmacology? Molecules. 2017, 22, 1135.
|
[18] |
Ru, J.L.; Li, P.; Wang, J.N.; Zhou, W.; Li, B.H.; Huang, C.; Li, P.D.; Guo, Z.H.; Tao, W.Y.; Yang, Y.F.; Xu, X.; Li, Y.; Wang, Y.H.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13.
|
[19] |
Barton, H.A.; Pastoor, T.P.; Baetcke, K.; Chambers, J.E.; Diliberto, J.; Doerrer, N.G.; Driver, J.H.; Hastings, C.E.; Iyengar, S.; Krieger, R.; Stahl, B.; Timchalk, C. The acquisition and application of absorption, distribution, metabolism, and excretion (ADME) data in agricultural chemical safety assessments. Crit. Rev. Toxicol. 2006, 36, 9–35.
|
[20] |
Kim, S.; Chen, J.; Cheng, T.J.; Gindulyte, A.; He, J.; He, S.Q.; Li, Q.L.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395.
|
[21] |
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364.
|
[22] |
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 2010, 24, 417–422.
|
[23] |
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461.
|
[24] |
Quiroga, R.; Villarreal, M.A. Vinardo: a scoring function based on autodock vina improves scoring, docking, and virtual screening. PLoS One. 2016, 11, e0155183.
|
[25] |
Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet. 2016, 388, 2023–2038.
|
[26] |
Wasserman, A.M. Diagnosis and management of rheumatoid arthritis. Am. Fam. Physician. 2011, 84, 1245–1252.
|
[27] |
Ma, Y.H.; Zhang, J.B.; Yu, H.; Zhang, Y.F.; Zhang, H.F.; Hao, C.Y.; Zuo, L.L.; Shi, N.Q.; Li, W.L. Traditional Chinese medicine rhodiola sachalinensis borissova from baekdu mountain (RsBBM) for rheumatoid arthritis: therapeutic effect and underlying molecular mechanisms. Molecules. 2022, 27, 6058.
|
[28] |
Zhang, Q.; Duan, H.X.; Li, R.L.; Sun, J.Y.; Liu, J.; Peng, W.; Wu, C.J.; Gao, Y.X. Inducing apoptosis and suppressing inflammatory reactions in synovial fibroblasts are two important ways for Guizhi-Shaoyao-zhimu Decoction against rheumatoid arthritis. J. Inflamm. Res. 2021, 14, 217–236.
|
[29] |
Kim, J.H.; Huh, J.E.; Baek, Y.H.; Lee, J.D.; Choi, D.Y.; Park, D.S. Effect of Phellodendron amurense in protecting human osteoarthritic cartilage and chondrocytes. J. Ethnopharmacol. 2011, 134, 234–242.
|
[30] |
Xian, Y.F.; Mao, Q.Q.; Ip, S.P.; Lin, Z.X.; Che, C.T. Comparison on the anti-inflammatory effect of Cortex Phellodendri Chinensis and Cortex Phellodendri Amurensis in 12-O-tetradecanoyl-phorbol-13-acetate-induced ear edema in mice. J. Ethnopharmacol. 2011, 137, 1425–1430.
|
[31] |
Wan, Y. Observation for clinical effect of phellodendron wet compress in treating the phlebitis caused by infusion. Pak. J. Pharm. Sci. 2018, 31, 1099–1102.
|
[32] |
Resch, M.; Steigel, A.; Chen, Z.L.; Bauer, R. 5-Lipoxygenase and cyclooxygenase-1 inhibitory active compounds from Atractylodes lancea. J. Nat. Prod. 1998, 61, 347–350.
|
[33] |
Tang, F.Y.; Fan, K.F.; Wang, K.L.; Bian, C.Z. Atractylodin attenuates lipopolysaccharide-induced acute lung injury by inhibiting NLRP3 inflammasome and TLR4 pathways. J. Pharmacol. Sci. 2018, 136, 203–211.
|
[34] |
Zhang, W.J.; Zhao, Z.Y.; Chang, L.K.; Cao, Y.; Wang, S.; Kang, C.Z.; Wang, H.Y.; Zhou, L.; Huang, L.Q.; Guo, L.P. Atractylodis Rhizoma: a review of its traditional uses, phytochemistry, pharmacology, toxicology and quality control. J. Ethnopharmacol. 2021, 266, 113415.
|
[35] |
Wang, X.; Wang, Z.Y.; Zheng, J.H.; Li, S. TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med. 2021, 19, 1–11.
|
[36] |
Huang, Y.T.; Guo, L.B.; Chitti, R.; Sreeharsha, N.; Mishra, A.; Gubbiyappa, S.K.; Singh, Y. Wogonin ameliorate complete Freund’s adjuvant induced rheumatoid arthritis via targeting NF-κB/MAPK signaling pathway. BioFactors. 2020, 46, 283–291.
|
[37] |
Li, C.; Zhang, W.J.; Frei, B. Quercetin inhibits LPS-induced adhesion molecule expression and oxidant production in human aortic endothelial cells by p38-mediated Nrf2 activation and antioxidant enzyme induction. Redox Biol. 2016, 9, 104–113.
|
[38] |
Ulusoy, H.G.; Sanlier, N. A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit. Rev. Food Sci. Nutr. 2020, 60, 3290–3303.
|
[39] |
Yuan, K.; Zhu, Q.Q.; Lu, Q.Y.; Jiang, H.X.; Zhu, M.M.; Li, X.H.; Huang, G.R.; Xu, A.L. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities. J. Nutr. Biochem. 2020, 84, 108454.
|
[40] |
Zhang, M.K.; Chen, Y.Y.; Zhou, Y.; Wu, X.A. The alleviating effect of quercetin on carbon tetrachloride-induced liver fibrosis in rats and its underlying mechanism. J. Chin. Pharm. Sci. 2022, 31, 840–852.
|
[41] |
Fukuma, Y.; Sakai, E.; Komaki, S.; Nishishita, K.; Okamoto, K.; Tsukuba, T. Rutaecarpine attenuates osteoclastogenesis by impairing macrophage colony stimulating factor and receptor activator of nuclear factor κ-B ligand-stimulated signalling pathways. Clin. Exp. Pharmacol. Physiol. 2018, 45, 863–865.
|
[42] |
Luo, J.Q.; Wang, X.; Jiang, X.H.; Liu, C.; Li, Y.Z.; Han, X.W.; Zuo, X.; Li, Y.N.; Li, N.; Xu, Y.N.; Si, S.Y. Rutaecarpine derivative R3 attenuates atherosclerosis via inhibiting NLRP3 inflammasome-related inflammation and modulating cholesterol transport. FASEB J. 2020, 34, 1398–1411.
|
[43] |
Wang, S.; Liu, L.; Zhang, Y.B.; Xu, W; Yang, X.W. Intestinal anti-inflammatory effects of main components of the fruits of Euodia rutaecarpa in a co-culture model of the human colorectal adenocarcinoma cells and RAW264.7 macrophages. J. Chin. Pharm. Sci. 2020, 29, 868–879.
|
[44] |
Xie, J.; Zhang, A.H.; Qiu, S.; Zhang, T.L.; Li, X.N.; Yan, G.L.; Sun, H.; Liu, L.; Wang, X.J. Identification of the perturbed metabolic pathways associating with prostate cancer cells and anticancer affects of obacunone. J. Proteomics. 2019, 206, 103447.
|
[45] |
Kim, J.; Jayaprakasha, G.K.; Patil, B.S. Obacunone exhibits anti-proliferative and anti-aromatase activity in vitro by inhibiting the p38 MAPK signaling pathway in MCF-7 human breast adenocarcinoma cells. Biochimie. 2014, 105, 36–44.
|
[46] |
Gao, Y.; Hou, R.; Liu, F.; Liu, H.B.; Fei, Q.L.; Han, Y.X.; Cai, R.L.; Peng, C.; Qi, Y. Obacunone causes sustained expression of MKP-1 thus inactivating p38 MAPK to suppress pro-inflammatory mediators through intracellular MIF. J. Cell. Biochem. 2018, 119, 837–849.
|
[47] |
Qiu, S.; Sun, H.; Zhang, A.H.; Xu, H.Y.; Yan, G.L.; Han, Y.; Wang, X.J. Natural alkaloids: basic aspects, biological roles, and future perspectives. Chin. J. Nat. Med. 2014, 12, 401–406.
|
[48] |
Kwon, S.; Chan, A.T. Extracting the benefits of berberine for colorectal cancer. Lancet Gastroenterol. Hepatol. 2020, 5, 231–233.
|
[49] |
Li, X.N.; Zhang, A.H.; Sun, H.; Liu, Z.D.; Zhang, T.L.; Qiu, S.; Liu, L.; Wang, X.J. Metabolic characterization and pathway analysis of berberine protects against prostate cancer. Oncotarget. 2017, 8, 65022–65041.
|
[50] |
Kim, M.; Kim, T.W.; Kim, C.J.; Shin, M.S.; Hong, M.H.; Park, H.S.; Park, S.S. Berberine ameliorates brain inflammation in poloxamer 407-induced hyperlipidemic rats. Int. Neurourol. J. 2019, 23, S102–S110.
|
[51] |
Habtemariam, S. The quest to enhance the efficacy of berberine for type-2 diabetes and associated diseases: physicochemical modification approaches. Biomedicines. 2020, 8, 90.
|
[52] |
Chen, X.; Jiang, X.Z.; Cheng, C.F.; Chen, J.; Huang, S.Y.; Xu, M.Q.; Liu, S.M. Berberine attenuates cardiac hypertrophy through inhibition of mTOR signaling pathway. Cardiovasc. Drugs Ther. 2020, 34, 463–473.
|
[53] |
Qin, S.R.; Tang, H.L.; Li, W.; Gong, Y.N.; Li, S.S.; Huang, J.; Fang, Y.X.; Yuan, W.J.; Liu, Y.Y.; Wang, S.J.; Guo, Y.M.; Guo, Y.; Xu, Z.F. AMPK and its activator berberine in the treatment of neurodegenerative diseases. Curr. Pharm. Des. 2020, 26, 5054–5066.
|
[54] |
Di Pierro, F.; Bertuccioli, A.; Giuberti, R.; Saponara, M.; Ivaldi, L. Role of a berberine-based nutritional supplement in reducing diarrhea in subjects with functional gastrointestinal disorders. Minerva Gastroenterol. Dietol. 2020, 66, 29–34.
|
[55] |
Xie, H.G.; Wang, Q.Q.; Zhang, X.Y.; Wang, T.; Hu, W.; Manicum, T.; Chen, H.; Sun, L.J. Possible therapeutic potential of berberine in the treatment of STZ plus HFD-induced diabetic osteoporosis. Biomed. Pharmacother. 2018, 108, 280–287.
|
[56] |
Wang, X.; He, X.; Zhang, C.F.; Guo, C.R.; Wang, C.Z.; Yuan, C.S. Anti-arthritic effect of berberine on adjuvant-induced rheumatoid arthritis in rats. Biomed. Pharmacother. 2017, 89, 887–893.
|
[57] |
Kiplimo, J.J.; Shahidul Islam, M.; Koorbanally, N.A. Ring A-seco limonoids and flavonoids from the Kenyan Vepris uguenensis Engl. and their antioxidant activity. Phytochemistry. 2012, 83, 136–143.
|
[58] |
Chen, G.R.; Liu, C.; Zhang, M.B.; Wang, X.B.; Xu, Y.B. Niloticin binds to MD-2 to promote anti-inflammatory pathway activation in macrophage cells. Int. J. Immunopathol. Pharmacol. 2022, 36, 3946320221133017.
|
[59] |
Esimone, C.O.; Eck, G.; Duong, T.N.; Uberla, K.; Proksch, P.; Grunwald, T. Potential anti-respiratory syncytial virus lead compounds from Aglaia species. Pharmazie. 2008, 63, 768–773.
|
[60] |
Mai, C.T.; Wu, M.M.; Wang, C.L.; Su, Z.R.; Cheng, Y.Y.; Zhang, X.J. Palmatine attenuated dextran sulfate sodium (DSS)-induced colitis via promoting mitophagy-mediated NLRP3 inflammasome inactivation. Mol. Immunol. 2019, 105, 76–85.
|
[61] |
Pan, H.; Lin, Y.Q.; Dou, J.P.; Fu, Z.; Yao, Y.Q.; Ye, S.Y.; Zhang, S.X.; Wang, N.; Liu, A.J.; Li, X.C.; Zhang, F.X.; Chen, D.F. Wedelolactone facilitates Ser/Thr phosphorylation of NLRP3 dependent on PKA signalling to block inflammasome activation and pyroptosis. Cell Prolif. 2020, 53, e12868.
|
[62] |
Yan, B.Q.; Wang, D.S.; Dong, S.W.; Cheng, Z.R.; Na, L.D.; Sang, M.Q.; Yang, H.Z.; Yang, Z.Q.; Zhang, S.D.; Yan, Z.T. Palmatine inhibits TRIF-dependent NF-κB pathway against inflammation induced by LPS in goat endometrial epithelial cells. Int. Immunopharmacol. 2017, 45, 194–200.
|
[63] |
Cheng, J.J.; Ma, X.D.; Ai, G.X.; Yu, Q.X.; Chen, X.Y.; Yan, F.; Li, Y.C.; Xie, J.H.; Su, Z.R.; Xie, Q.F. Palmatine protects against MSU-induced gouty arthritis via regulating the NF-κB/NLRP3 and Nrf2 pathways. Drug Des. Devel. Ther. 2022, 16, 2119–2132.
|
[64] |
Tang, C.L.; Hong, J.M.; Hu, C.Y.; Huang, C.X.; Gao, J.; Huang, J.; Wang, D.; Geng, Q.T.; Dong, Y.F. Palmatine protects against cerebral ischemia/reperfusion injury by activation of the AMPK/Nrf2 pathway. Oxid. Med. Cell Longev. 2021, 2021, 6660193.
|
[65] |
Laperle, J.; Hébert-Deschamps, S.; Raby, J.; de Lima Morais, D.A.; Barrette, M.; Bujold, D.; Bastin, C.; Robert, M.A.; Nadeau, J.F.; Harel, M.; Nordell-Markovits, A.; Veilleux, A.; Bourque, G.; Jacques, P.É. The epiGenomic Efficient Correlator (epiGeEC) tool allows fast comparison of user datasets with thousands of public epigenomic datasets. Bioinformatics. 2019, 35, 674–676.
|
[66] |
Taymaz-Nikerel, H.; Cankorur-Cetinkaya, A.; Kirdar, B. Genome-wide transcriptional response of saccharomyces cerevisiae to stress-induced perturbations. Front. Bioeng. Biotechnol. 2016, 4, 17.
|
[67] |
McInnes, I.B.; Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 2017, 389, 2328–2337.
|
[68] |
Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148.
|
[69] |
Tebib, J.G.; Boughaba, H.; Letroublon, M.C.; Bienvenu, J.; Noel, E.; Armanet, P.; Colson, F.; Roullet, A.; Bouvier, M. Serum IL-2 level in rheumatoid arthritis: correlation with joint destruction and disease progression. Eur. Cytokine Netw. 1991, 2, 239–243.
|
[70] |
Li, B.C.; Guo, Q.L.; Wang, Y.Y.; Su, R.; Gao, C.; Zhao, J.F.; Li, X.F.; Wang, C.H. Increased serum interleukin-2 levels are associated with abnormal peripheral blood natural killer cell levels in patients with active rheumatoid arthritis. Mediators Inflamm. 2020, 2020, 6108342.
|
[71] |
Wood, N.C.; Symons, J.A.; Duff, G.W. Serum interleukin-2-receptor in rheumatoid arthritis: a prognostic indicator of disease activity? J. Autoimmun. 1988, 1, 353–361.
|
[72] |
Rosenzwajg, M.; Lorenzon, R.; Cacoub, P.; Pham, H.P.; Pitoiset, F.; El Soufi, K.; RIbet, C.; Bernard, C.; Aractingi, S.; Banneville, B.; Beaugerie, L.; Berenbaum, F.; Champey, J.; Chazouilleres, O.; Corpechot, C.; Fautrel, B.; Mekinian, A.; Regnier, E.; Saadoun, D.; Salem, J.E.; Sellam, J.; Seksik, P.; Daguenel-Nguyen, A.; Doppler, V.; Mariau, J.; Vicaut, E.; Klatzmann, D. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann. Rheum. Dis. 2019, 78, 209–217.
|
[73] |
Zhang, X.Y.; Miao, M.; Zhang, R.J.; Liu, X.; Zhao, X.Z.; Shao, M.; Liu, T.; Jin, Y.B.; Chen, J.L.; Liu, H.X.; Zhang, X.; Li, Y.; Zhou, Y.S.; Yang, Y.; Li, R.; Yao, H.H.; Liu, Y.Y.; Li, C.; Li, Y.H.; Ren, L.M.; Su, Y.; Sun, X.L.; He, J.; Li, Z.G. Efficacy and safety of low-dose interleukin-2 in combination with methotrexate in patients with active rheumatoid arthritis: a randomized, double-blind, placebo-controlled phase 2 trial. Signal Transduct. Target. Ther. 2022, 7, 67.
|
[74] |
Sato, K.; Kawasaki, H.; Nagayama, H.; Serizawa, R.; Ikeda, J.; Morimoto, C.; Yasunaga, K.; Yamaji, N.; Tadokoro, K.; Juji, T.; Takahashi, T.A. CC chemokine receptors, CCR-1 and CCR-3, are potentially involved in antigen-presenting cell function of human peripheral blood monocyte-derived dendritic cells. Blood. 1999, 93, 34–42.
|
[75] |
Han, S.W.; Sa, K.H.; Kim, S.I.; Lee, S.I.; Park, Y.W.; Lee, S.S.; Yoo, W.H.; Soe, J.S.; Nam, E.J.; Lee, J.; Park, J.Y.; Kang, Y.M. CCR5 gene polymorphism is a genetic risk factor for radiographic severity of rheumatoid arthritis. Tissue Antigens. 2012, 80, 416–423.
|
[76] |
Agere, S.A.; Akhtar, N.; Watson, J.M.; Ahmed, S. RANTES/CCL5 induces collagen degradation by activating MMP-1 and MMP-13 expression in human rheumatoid arthritis synovial fibroblasts. Front. Immunol. 2017, 8, 1341.
|
[77] |
Itoh, Y. Metalloproteinases in rheumatoid arthritis: potential therapeutic targets to improve current therapies. Prog. Mol. Biol. Transl. Sci. 2017, 148, 327–338.
|
[78] |
Alamgeer; Hasan, U.H.; Uttra, A.M.; Qasim, S.; Ikram, J.; Saleem, M.; Niazi, Z.R. Phytochemicals targeting matrix metalloproteinases regulating tissue degradation in inflammation and rheumatoid arthritis. Phytomedicine. 2020, 66, 153134.
|
[79] |
Fang, Q.H.; Zhou, C.; Nandakumar, K.S. Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis. Mediators Inflamm. 2020, 2020, 3830212.
|
[80] |
Yoshihara, Y.; Nakamura, H.; Obata, K.; Yamada, H.; Hayakawa, T.; Fujikawa, K.; Okada, Y. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann. Rheum. Dis. 2000, 59, 455–461.
|
[81] |
Huynh, C.B.; Nagaarudkumaran, N.; Kalyaanamoorthy, S.; Ngo, W. In silico and in vitro approach for validating the inhibition of matrix metalloproteinase-9 by quercetin. Eye Contact Lens. 2023, 49, 193–198.
|
[82] |
Haleagrahara, N.; Hodgson, K.; Miranda-Hernandez, S.; Hughes, S.; Kulur, A.B.; Ketheesan, N. Flavonoid quercetin-methotrexate combination inhibits inflammatory mediators and matrix metalloproteinase expression, providing protection to joints in collagen-induced arthritis. Inflammopharmacology. 2018, 26, 1219–1232.
|
[83] |
Sung, M.S.; Lee, E.G.; Jeon, H.S.; Chae, H.J.; Park, S.J.; Lee, Y.C.; Yoo, W.H. Quercetin inhibits IL-1β-induced proliferation and production of MMPs, COX-2, and PGE2 by rheumatoid synovial fibroblast. Inflammation. 2012, 35, 1585–1594.
|
[84] |
Arnhold, J. The dual role of myeloperoxidase in immune response. Int. J. Mol. Sci. 2020, 21, 8057.
|
[85] |
Fousert, E.; Toes, R.; Desai, J. Neutrophil extracellular traps (NETs) take the central stage in driving autoimmune responses. Cells. 2020, 9, 915.
|
[86] |
Connelly, M.A.; Marcu, K.B. CHUK, a new member of the helix-loop-helix and leucine zipper families of interacting proteins, contains a serine-threonine kinase catalytic domain. Cell Mol. Biol. Res. 1995, 41, 537–549.
|
[87] |
Hinz, M.; Scheidereit, C. The IκB kinase complex in NF-κB regulation and beyond. EMBO Rep. 2014, 15, 46–61.
|
[88] |
Du, M.J.; Ea, C.K.; Fang, Y.; Chen, Z.J. Liquid phase separation of NEMO induced by polyubiquitin chains activates NF-κB. Mol. Cell. 2022, 82, 2415–2426.e5.
|
[89] |
Yao, M.H.; Huang, X.; Guo, Y.S.; Zhao, J.V.; Liu, Z.H. Disentangling the common genetic architecture and causality of rheumatoid arthritis and systemic lupus erythematosus with COVID-19 outcomes: Genome-wide cross trait analysis and bidirectional Mendelian randomization study. J. Med. Virol. 2023, 95, e28570.
|
[90] |
Ringer, A.; Ruffino, J.P.; Leiva, R.; Cuadranti, N.; Argento, M.C.; Martínez, M.F.; Rolla, I.; Chulibert, S.; Carbone, D.; Palatnik, M.; Cortese, M.N.; Lagrutta, M.; Córdoba, L.; González, F.B.; Pacini, M.F.; Villar, S.R.; Águila, D.; Bottasso, O.A.; Pérez, A.R.; Abdala, M. Chagas disease reactivation in rheumatologic patients: association with immunosuppressive therapy and humoral response. Clin. Rheumatol. 2021, 40, 2955–2963.
|
[91] |
Durieux, M.F.; Lopez, J.G.; Banjari, M.; Passebosc-Faure, K.; Brenier-Pinchart, M.P.; Paris, L.; Gargala, G.; Berthier, S.; Bonhomme, J.; Chemla, C.; Villena, I.; Flori, P.; Fréalle, E.; L’Ollivier, C.; Lussac-Sorton, F.; Montoya, J.G.; Cateau, E.; Pomares, C.; Simon, L.; Quinio, D.; Robert-Gangneux, F.; Yera, H.; Labriffe, M.; Fauchais, A.L.; Dardé, M.L. Toxoplasmosis in patients with an autoimmune disease and immunosuppressive agents: a multicenter study and literature review. PLoS Negl. Trop. Dis. 2022, 16, e0010691.
|
[92] |
Ling, Y.Y.; Yang, J.; Hua, D.; Wang, D.W.; Zhao, C.L.; Weng, L.; Yue, D.D.; Cai, X.T.; Meng, Q.H.; Chen, J.; Sun, X.Y.; Kong, W.K.; Zhu, L.Z.; Cao, P.; Hu, C.P. ZhiJingSan inhibits osteoclastogenesis via regulating RANKL/NF-κB signaling pathway and ameliorates bone erosion in collagen-induced mouse arthritis. Front. Pharmacol. 2021, 12, 693777.
|
[93] |
Tanaka, S. Emerging anti-osteoclast therapy for rheumatoid arthritis. J. Orthop. Sci. 2018, 23, 717–721.
|
[94] |
Wang, Y.; Chen, S.J.; Du, K.Z.; Liang, C.X.; Wang, S.Q.; Owusu Boadi, E.; Li, J.; Pang, X.L.; He, J.; Chang, Y.X. Traditional herbal medicine: therapeutic potential in rheumatoid arthritis. J. Ethnopharmacol. 2021, 279, 114368.
|
[95] |
Attiq, A.; Yao, L.J.; Afzal, S.; Khan, M.A. The triumvirate of NF-κB, inflammation and cytokine storm in COVID-19. Int. Immunopharmacol. 2021, 101, 108255.
|
[96] |
Wu, Y.X.; Ma, L.; Cai, S.H.; Zhuang, Z.; Zhao, Z.Y.; Jin, S.H.; Xie, W.H.; Zhou, L.L.; Zhang, L.; Zhao, J.C.; Cui, J. RNA-induced liquid phase separation of SARS-CoV-2 nucleocapsid protein facilitates NF-κB hyper-activation and inflammation. Signal Transduct. Target. Ther. 2021, 6, 167.
|
[97] |
Maldonado, E.; Rojas, D.A.; Urbina, F.; Solari, A. The oxidative stress and chronic inflammatory process in chagas disease: role of exosomes and contributing genetic factors. Oxid. Med. Cell Longev. 2021, 2021, 4993452.
|
[98] |
Guo, G.H.; Cui, J.M.; Song, L.D.; Tang, L.Q.; Fan, S.J.; Shen, B.; Fang, R.; Hu, M.; Zhao, J.L.; Zhou, Y.Q. Activation of NF-κB signaling by the dense granule protein GRA15 of a newly isolated type 1 Toxoplasma gondii strain. Parasit. Vectors. 2022, 15, 347.
|
[99] |
Asagiri, M.; Takayanagi, H. The molecular understanding of osteoclast differentiation. Bone. 2007, 40, 251–264.
|
[100] |
Wang, Y.X. Cardiovascular functional phenotypes and pharmacological responses in apolipoprotein E deficient mice. Neurobiol. Aging. 2005, 26, 309–316.
|
[101] |
Nakanishi, Y.; Kang, S.J.; Kumanogoh, A. Axon guidance molecules in immunometabolic diseases. Inflamm. Regen. 2022, 42, 5.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||