[1] |
Kopelman, P.G. Obesity as a medical problem. Nature. 2000, 404, 635–643.
|
[2] |
Meigs, J. Epidemiology of the metabolic syndrome, 2002. Am. J. Manag. Care. 2002, 8, S283–S286.
|
[3] |
Reaven, G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988, 37, 1595–1607.
|
[4] |
Wu, J.; Boström, P.; Sparks, L.M.; Ye, L.; Choi, J.H.; Giang, A.H.; Khandekar, M.; Virtanen, K.A.; Nuutila, P.; Schaart, G.; Huang, K.X.; Tu, H.; van Marken Lichtenbelt, W.D.; Hoeks, J.; Enerbäck, S.; Schrauwen, P.; Spiegelman, B.M. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012, 150, 366–376.
|
[5] |
Schupp, M.; Lazar, M.A. Endogenous ligands for nuclear receptors: digging deeper. J. Biol. Chem. 2010, 285, 40409–40415.
|
[6] |
Ghaben, A.L.; Scherer, P.E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 2019, 20, 242–258.
|
[7] |
Cristancho, A.G.; Lazar, M.A. Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 2011, 12, 722–734.
|
[8] |
Hotamisligil, G.S.; Bernlohr, D.A. Metabolic functions of FABPs: mechanisms and therapeutic implications. Nat. Rev. Endocrinol. 2015, 11, 592–605.
|
[9] |
Vroegrijk, I.O.C.M.; van Klinken, J.B.; van Diepen, J.A.; van den Berg, S.A.A.; Febbraio, M.; Steinbusch, L.K.M.; Glatz, J.F.C.; Havekes, L.M.; Voshol, P.J.; Rensen, P.C.N.; van Dijk, K.W.; van Harmelen, V. CD36 is important for adipocyte recruitment and affects lipolysis. Obesity. 2013, 21, 2037–2045.
|
[10] |
Gao, H.; Volat, F.; Sandhow, L.; Galitzky, J.; Nguyen, T.; Esteve, D.; Åström, G.; Mejhert, N.; Ledoux, S.; Thalamas, C.; Arner, P.; Guillemot, J.C.; Qian, H.; Rydén, M.; Bouloumié, A. CD36 is a marker of human adipocyte progenitors with pronounced adipogenic and triglyceride accumulation potential. Stem Cells. 2017, 35, 1799–1814.
|
[11] |
Lee, J.T. Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev. 2009, 23, 1831–1842.
|
[12] |
Huarte, M.; Rinn, J.L. Large non-coding RNAs: missing links in cancer? Hum. Mol. Genet. 2010, 19, R152–R161.
|
[13] |
Huarte, M.; Guttman, M.; Feldser, D.; Garber, M.; Koziol, M.J.; Kenzelmann-Broz, D.; Khalil, A.M.; Zuk, O.; Amit, I.; Rabani, M.; Attardi, L.D.; Regev, A.; Lander, E.S.; Jacks, T.; Rinn, J.L. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010, 142, 409–419.
|
[14] |
Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; Wang, Y.L.; Brzoska, P.; Kong, B.; Li, R.; West, R.B.; van de Vijver, M.J.; Sukumar, S.; Chang, H.Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010, 464, 1071–1076.
|
[15] |
Loewer, S.; Cabili, M.N.; Guttman, M.; Loh, Y.H.; Thomas, K.; Park, I.H.; Garber, M.; Curran, M.; Onder, T.; Agarwal, S.; Manos, P.D.; Datta, S.; Lander, E.S.; Schlaeger, T.M.; Daley, G.Q.; Rinn, J.L. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 2010, 42, 1113–1117.
|
[16] |
Guttman, M.; Rinn, J.L. Modular regulatory principles of large non-coding RNAs. Nature. 2012, 482, 339–346.
|
[17] |
Wang, K.C.; Yang, Y.W.; Liu, B.; Sanyal, A.; Corces-Zimmerman, R.; Chen, Y.; Lajoie, B.R.; Protacio, A.; Flynn, R.A.; Gupta, R.A.; Wysocka, J.; Lei, M.; Dekker, J.; Helms, J.A.; Chang, H.Y. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011, 472, 120–124.
|
[18] |
Hu, W.; Alvarez-Dominguez, J.R.; Lodish, H.F. Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep. 2012, 13, 971–983.
|
[19] |
Guttman, M.; Donaghey, J.; Carey, B.W.; Garber, M.; Grenier, J.K.; Munson, G.; Young, G.; Lucas, A.B.; Ach, R.; Bruhn, L.; Yang, X.P.; Amit, I.; Meissner, A.; Regev, A.; Rinn, J.L.; Root, D.E.; Lander, E.S. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011, 477, 295–300.
|
[20] |
Momen-Heravi, F.; Bala, S.S. Emerging role of non-coding RNA in oral cancer. Cell Signal. 2018, 42, 134–143.
|
[21] |
Alexander, R.; Lodish, H.; Sun, L. MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert. Opin. Ther. Targets. 2011, 15, 623–636.
|
[22] |
Chen, C.; Cui, Q.M.; Zhang, X.; Luo, X.; Liu, Y.Y.; Zuo, J.B.; Peng, Y.L. Long non-coding RNAs regulation in adipogenesis and lipid metabolism: Emerging insights in obesity. Cell Signal. 2018, 51, 47–58.
|
[23] |
Yi, F.; Yang, F.; Liu, X.Q.; Chen, H.B.; Ji, T.; Jiang, L.X.; Wang, X.X.; Yang, Z.P.; Zhang, L.H.; Ding, X.F.; Liang, Z.C.; Du, Q. RNA-seq identified a super-long intergenic transcript functioning in adipogenesis. RNA Biol. 2013, 10, 990–1001.
|
[24] |
Devaraj, S.; Jialal, I. Dysfunctional endothelial progenitor cells in metabolic syndrome. Exp. Diabetes Res. 2012, 2012, 585018.
|