Journal of Chinese Pharmaceutical Sciences ›› 2020, Vol. 29 ›› Issue (12): 831-854.DOI: 10.5246/jcps.2020.12.075
• Review • Previous Articles Next Articles
Dacheng Hao1, Peigen Xiao2,*()
Received:
2020-09-13
Revised:
2020-10-14
Accepted:
2020-10-19
Online:
2020-12-30
Published:
2020-12-30
Contact:
Peigen Xiao
About author:
Professor Peigen Xiao, Academician of the Chinese Academy of Engineering, is the founder and research leader on Chinese medicinal plant as well as Chinese Materia Medica (CMM), and also a worldwide famous ethnopharmacologist. He served at the Institute of Materia Medica, Chinese Academy of Medical Sciences (CAMS) from 1953 to 1983 as research assistant, research lecturer and research associate professor. Since 1983 he has become a professor and was designated as the director of Institute of Medicinal Plant Development (IMPLAD), CAMS. His research interests include plant phylogeny, phytochemistry, pharmacology and plant therapeutics with immunomodulatiing and antiaging activities, as well as biotechnology of medicinal plants. The publication list contains 22 books, e.g. Modern Chinese Materia Medica I−V (2002−2006) and more than 530 original research articles and review papers. For his outstanding works, a serial prizes was awarded to him by the Chinese Government, the Ministry of Health. |
Supporting:
Dacheng Hao, Peigen Xiao. Plant pharmacophylogeny: past, present and future[J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(12): 831-854.
[1] |
Hao, D.C.; Xiao, P.G. An introduction of plant pharmacophylogeny. Beijing: Chemical Industry Press. 2017.
|
[2] |
Zhang, H.L.; Hsia, K.C.; Lou, T.C. Botanical and pharmacognostical studies of the Chinese drug hu-Huang-lien, rhizome picrorrhizae. Acta Pharm. Sin. 1965, 12, 808–816.
|
[3] |
Lian, W.Y.; Zhu, Z.Y.; Fan, J.F.; Hong, Q.; Lou, Z.C. Studies on Chinese benzoin. Acta Pharm. Sin. 1964, 11, 700–707.
|
[4] |
Feng, Y.C.; Lien, W.Y.; Lou, T.C. Studies on certain Chinese acacia gums. Acta Pharm. Sin. 1963, 10, 496–506.
|
[5] |
Zhang, H.D.; Tong, Y.Y.; Lou, T.C. Studies on the Chinese species of strychnos. i. strychnos pierriana a. w. hill. Acta Pharm. Sin. 1963, 10, 365–370.
|
[6] |
Xiao, P.G.; He, L.Y. Przewalskia tangutica- A tropane alkaloid-containing plant. Planta Med. 1982, 45, 112–115.
|
[7] |
Xiao, P.G.; He, L.Y; Wang, L.W.Study on Tibetan medicine of Hyoscyamus. Bull. Chin. Mater. Med. 1984, 9, 10–11.
|
[8] |
Hegnauer, R. Chemotaxonomie der Pflanzen: Eine Übersicht über die Verbreitung und die systematische Bedeutung der Pflanzenstoffe. Germany: Birkhäuser. 1973.
|
[9] |
Xiao, P.G. Resource utilization of rhubarb medicinal plants. Bull. Chin. Mater. Med. 1981, 6, 11–13.
|
[10] |
Xiao, P.G.; Xu, K.X.; Song, X.M. A comprehensive multivariate analysis of the correlation among external morphology, chemical constituents and purgative activity of Rheum species. Chin. J. Int. Tradit. West. Med. 1982, 2, 197, 231–234.
|
[11] |
Hao, D.C.; Xiao, P.G.; Liu, M.; Peng, Y.; He, C.N. Pharmaphylogeny vs. pharmacophylogenomics: molecular phylogeny, evolution and drug discovery. Acta Pharm. Sin. 2014, 49, 1387–1394.
|
[12] |
Hao, D.C.; Xiao, P.G. Genomics and evolution in traditional medicinal plants: road to a healthier life.Evol. Bioinform. 2015, 11, DOI:10.4137.
|
[13] |
Li, Z.Y.; Yang, H.J.; Tang, S.H.; Yang, B.; Jiang, W.K.; Huang, L.Q. Study strategies on medicinal properties of foreign medicine introduced to traditional Chinese medicine. China J. Chin. Mater. Med. 2019, 44, 2972–2979.
|
[14] |
Souza, E.N.F.; Williamson, E.M.; Hawkins, J.A. Which plants used in ethnomedicine are characterized? phylogenetic patterns in traditional use related to research effort. Front. Plant Sci. 2018, 9, 834.
|
[15] |
Zhu, M.; Xiao, P.G. Chemosystematic studies on thalictrum L. in China. Acta Phytotaxon. Sin. 1991, 29, 358–369.
|
[16] |
Zhu, M.; Xiao, P.G. Distribution of benzylisoquinolines in Magnoliidae and other taxa. Acta Phytotaxon. Sin. 1991, 29, 142–155.
|
[17] |
Garnatje, T.; Peñuelas, J.; Vallès, J. Ethnobotany, phylogeny, and ‘omics’ for human health and food security. Trends Plant Sci. 2017, 22, 187–191.
|
[18] |
Hao, D.C.; Xiao, P.G.; Liu, C. Traditional Tibetan medicinal plants: a highlighted resource for novel therapeutic compounds. Futur. Med. Chem. 2018, 10, 2537–2555.
|
[19] |
Huang, H.H.; Li, X.; Gao, W.Y.; Xiao, P.G. Studies on genetic relationship of Dioscorea. China J. Chin. Mater. Med. 2015, 40, 3470–3479.
|
[20] |
Saslis-Lagoudakis, C.H.; Savolainen, V.; Williamson, E.M.; Forest, F.; Wagstaff, S.J.; Baral, S.R.; Watson, M.F.; Pendry, C.A.; Hawkins, J.A. Phylogenies reveal predictive power of traditional medicine in bioprospecting. PNAS. 2012, 109, 15835–15840.
|
[21] |
Grace, O.M.; Buerki, S.; Symonds, M.R.; Forest, F.; van Wyk, A.E.; Smith, G.F.; Klopper, R.R.; Bjorå, C.S.; Neale, S.; Demissew, S.; Simmonds, M.S.; Rønsted, N. Evolutionary history and leaf succulence as explanations for medicinal use in aloes and the global popularity of Aloe vera. BMC Evol. Biol. 2015, 15, 29.
|
[22] |
Grace, O.M.; Dzajic, A.; Jäger, A.K.; Nyberg, N.T.; Önder, A.; Rønsted, N. Monosaccharide analysis of succulent leaf tissue in Aloe. Phytochemistry. 2013, 93, 79–87.
|
[23] |
Larsson, S.; Ronsted, N. Reviewing Colchicaceae alkaloids – perspectives of evolution on medicinal chemistry. Curr. Top. Med. Chem. 2013, 14, 274–289.
|
[24] |
Rønsted, N.; Symonds, M.R.E.; Birkholm, T.; Christensen, S.; Meerow, A.W.; Molander, M.; Mølgaard, P.; Petersen, G.; Rasmussen, N.; van Staden, J.; Stafford, G.I.; Jäger, A.K. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae. BMC Evol. Biol. 2012, 12, 182.
|
[25] |
Pellicer, J.; Saslis-Lagoudakis, C.H.; Carrió, E.; Ernst, M.; Garnatje, T.; Grace, O.M.; Gras, A.; Mumbrú, M.; Vallès, J.; Vitales, D.; Rønsted, N. A phylogenetic road map to antimalarial Artemisia species. J. Ethnopharmacol. 2018, 225, 1–9.
|
[26] |
Cámara-Leret, R.; Faurby, S.; Macía, M.J.; Balslev, H.; Göldel, B.; Svenning, J.C.; Kissling, W.D.; Rønsted, N.; Saslis-Lagoudakis, C.H. Fundamental species traits explain provisioning services of tropical American palms. Nat. Plants. 2017, 3, 16220.
|
[27] |
Hao, D.C. Ranunculales medicinal plants: Biodiversity, chemodiversity and pharmacotherapy. London: Academic Press. 2018.
|
[28] |
Ernst, M.; Saslis-Lagoudakis, C.H.; Grace, O.M.; Nilsson, N.; Simonsen, H.T.; Horn, J.W.; Rønsted, N. Evolutionary prediction of medicinal properties in the genus Euphorbia L. Sci. Rep. 2016, 6, 30531.
|
[29] |
Ernst, M.; Grace, O.M.; Saslis-Lagoudakis, C.H.; Nilsson, N.; Simonsen, H.T.; Rønsted, N. Global medicinal uses of Euphorbia L.(Euphorbiaceae). J. Ethnopharmacol. 2015, 176, 90–101.
|
[30] |
Wang, Z.Q.; He, C.N.; Peng, Y.; Chen, F.H.; Xiao, P.G. Origins, phytochemistry, pharmacology, analytical methods and safety of cortex moutan (paeonia suffruticosa andrew): a systematic review. Molecules. 2017, 22, 946.
|
[31] |
Zou, X.X.; Huang, L.Q.; Cui, G.H.; Yuan, Q.J.; Peng, Y.; Liu, Y.; Xiao, P.G. Genetic relationships of Atractylodes plants. Acta Pharm. Sin. 2009, 44, 680–686.
|
[32] |
He, C.N.; Peng, Y.; Xiao, W.; Xiao, P.G. A preliminary study on ethnopharmacology of Scutellaria in China. Mod. Chin. Med. 2012, 2012, 16–20.
|
[33] |
Shen, J. Study on quality assessment of the aerial parts of Scutellaria baicalensis Georgi and a primary pharmacophylogenetic investigation in the genus Scutellaria. Chin. Acad. Med. Sci. 2018, 1–98.
|
[34] |
Hao, D.C.; Xiao, P.G.; Liu, L.W.; Peng, Y.; He, C.N. Essentials of pharmacophylogeny: knowledge pedigree, epistemology and paradigm shift. China J. Chin. Mater. Med. 2015, 40, 3335–3342.
|
[35] |
Zhao, J.; Ding, H.X.; Zhao, D.G.; Wang, C.M.; Gao, K. Isolation, modification and cytotoxic evaluation of flavonoids from Rhododendron hainanense. J. Pharm. Pharmacol. 2012, 64, 1785–1792.
|
[36] |
Zhang, Y.Z. The distribution patterns of secondary metabolites in the tree of life of the seed plants. Yunnan Unive. PhD Diss. 2018.
|
[37] |
Bi, W. Anti-tumor constituents from Kujin tea and a pharmacophylogenetic investigation in the genus Acer L. Chin. Acad. Medi. Scie. PhD Diss. 2016.
|
[38] |
Fritz, S.A.; Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 2010, 24, 1042–1051.
|
[39] |
Zhang, Y.Z.; Deng, T.; Sun, L.; Landis, J.B.; Moore, M.J.; Wang, H.C.; Wang, Y.H.; Hao, X.J.; Chen, J.J.; Li, S.H.; Xu, M.N.; Puno, P.T.; Raven, P.H.; Sun, H. Phylogenetic patterns suggest frequent multiple origins of secondary metabolites across the seed plant "tree of life". Natl. Sci. Rev. 2020, nwaa105, https://doi.org/10.1093/nsr/nwaa105.
|
[40] |
Xiao, P.G. A pharmacophylogenetic study of Aconitum L. (Ranunculaceae) from China. Acta Phytotaxon. Sin. 2006, 44, 1–46.
|
[41] |
Maldonado, C.; Barnes, C.J.; Cornett, C.; Holmfred, E.; Hansen, S.H.; Persson, C.; Antonelli, A.; Rønsted, N. Phylogeny predicts the quantity of antimalarial alkaloids within the iconic yellow Cinchona bark (Rubiaceae: Cinchona calisaya). Front. Plant Sci. 2017, 8, 391.
|
[42] |
Hao, D.C.; Xiao, P.G. Deep in shadows: Epigenetic and epigenomic regulations of medicinal plants. Chin. Herb. Med. 2018, 10, 239–248.
|
[43] |
Hao, D.C.; Yang, L. Drug metabolism and disposition diversity of Ranunculales phytometabolites: a systems perspective. Expert Opin. Drug Metab. Toxicol. 2016, 12, 1047–1065.
|
[44] |
Hao, D.C.; Xiao, P.G. Network pharmacology: a Rosetta stone for traditional Chinese medicine. Drug Dev. Res. 2014, 75, 299–312.
|
[45] |
Hao, D.C.; Ge, G.B.; Xiao, P.G.; Wang, P.; Yang, L. Drug metabolism and pharmacokinetic diversity of Ranunculaceae medicinal compounds. Curr. Drug Metab. 2015, 16, 294–321.
|
[46] |
Hao, D.C.; Xiao, P.G. Impact of drug metabolism/pharmacokinetics and their relevance upon salviabased drug discovery. Curr. Drug Metab. 2018, 18, 1071–1084.
|
[47] |
Hao, D.C.; Ge, G.B.; Wang, P.; Yang, L. Impact of drug metabolism/pharmacokinetics and their relevance upon taxus-based drug development. Curr. Drug Metab. 2018, 19, 930–959.
|
[48] |
Fu, X.J.; Wang, Z.G.; Wang, C.; Li, X.; Wang, H.; Zhao, J. The distribution and association relationships of marine Chinese medicine with different nature in the phylogenetic tree of marine organisms. Mod. Tradit. Chin. Med. Mater. Med. World Sci. Technol. 2015, 17, 2189–2196.
|
[49] |
Liu, Y.Z.; Chen, S.L.; Ma, P.; Xiao, P.G. Ways to find new anticancer drugs from Chinese herbal medicines. Drugs Clin. 2012, 27, 323–337.
|
[50] |
Yessoufou, K.; Daru, B.H.; Muasya, A.M. Phylogenetic exploration of commonly used medicinal plants in South Africa. Mol. Ecol. Resour. 2015, 15, 405–413.
|
[51] |
Xiao, P.G.; Wang, L.W.; Lv, S.J. Statistical analysis of the ethnopharmacologic data based on Chinese medicinal plants by electronic computer I. Magnoliidae. Chin. J. Int. Tradit. West. Med. 1986, 6, 253–256.
|
[52] |
Bai, Z.F.; Wang, X.Q.; Xiao, P.G.; Liu, Y. Investigation on ethnopharmacology of Gesneriaceae in Guangxi. J. Chin. Med. Mater. 2012, 2012, 20–23.
|
[53] |
Liu, H.T.; Qi, Y.D.; Xu, L.; Peng, Y.; Zhang, B.G.; Xiao, P.G. Investigation on ethnopharmacology of Schisandraceae plants in China. China J. Chin. Mater. Med. 2012, 2012, 1353–1359.
|
[54] |
Qi, Y.D.; Li, L.P.; Xiao, P.G.; Guo, H.J.; Luo, L.; Liu, H.T.; Jia, X.G.; Zhang, B.G. The influence of Silk Road on Uygur medicine. Mod. Chin. Med. 2016, 18, 375–378.
|
[55] |
Xiao, P.G.; He, C.N. Overview of world traditional medicine. Mod. Chin. Med. 2019, 21, 847–850.
|
[56] |
Xiao, W.; Yu, F.; Xu, L.J.; Wei, J.H.; Xiao, P.G. Important resource on Maritime Silk Road-Moringa oleifera leaf tea. Mod. Chin. Med. 2019, 21, 851–854.
|
[57] |
Lei, D.; Wu, J.; Leon, C.; Huang, L.F.; Hawkins, J.A. Medicinal plants of Chinese Pharmacopoeia and Daodi: Insights from phylogeny and biogeography. Chin. Herb. Med. 2018, 10, 269–278.
|
[58] |
Li, J.Y.; Fu, X.J.; Li, X.; Wang, Z. Association relationships of traditional Chinese medicine with different meridian tropism in phylogenetic tree. Chin. J. Exp. Tradit. Med. Formulae. 2017, 23, 194–200.
|
[59] |
Li, J.Y. Analysis of the association between Chinese medicinal herbs, family genera and component molecular skeleton based on association network and phylogenetic tree. J. Shangdong Univ. Tradit. Chin. Med. 2018.
|
[60] |
Hao, D.C.; Gu, X.J.; Xiao, P.G. Medicinal plants: Chemistry, biology and omics. Oxford: Woodhead Publishing. 2015.
|
[61] |
Cao, J.; Wang, Y. Relationship between chemical constituents and herbs’ properties of relative plant herbs. China J. Chin. Mater. Med. 2013, 38, 453–458.
|
[62] |
Hao, D.C.; Xiao, P.G.; Ma, H.Y.; Peng, Y.; He, C.N. Mining chemodiversity from biodiversity: pharmacophylogeny of medicinal plants of Ranunculaceae. Chin. J. Nat. Med. 2015, 13, 507–520.
|
[63] |
Hao, D.C.; Gu, X.J.; Xiao, P.G. Recent advances in the chemical and biological studies of Aconitum pharmaceutical resources. J. Chin. Pharm. Sci. 2013, 22, 209–221.
|
[64] |
Hao, D.C.; Gu, X.J.; Xiao, P.G. 8-Chemical and biological studies of Cimicifugeae pharmaceutical resources. Med. Plants. 2015, 293–340.
|
[65] |
Hao, D.C.; Ma, P.; Mu, J.; Chen, S.L.; Xiao, P.G.; Peng, Y.; Huo, L.; Xu, L.J.; Sun, C. De novo characterization of the root transcriptome of a traditional Chinese medicinal plant Polygonum cuspidatum. Sci. China Life Sci. 2012, 55, 452–466.
|
[66] |
Yang, Y.; Moore, M.J.; Brockington, S.F.; Soltis, D.E.; Wong, G.K.S.; Carpenter, E.J.; Zhang, Y.; Chen, L.; Yan, Z.X.; Xie, Y.L.; Sage, R.F.; Covshoff, S.; Hibberd, J.M.; Nelson, M.N.; Smith, S.A. Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. Mol. Biol. Evol. 2015, 32, 2001–2014.
|
[67] |
Bruun-Lund, S.; Clement, W.L.; Kjellberg, F.; Rønsted, N. First plastid phylogenomic study reveals potential cyto-nuclear discordance in the evolutionary history of Ficus L. (Moraceae). Mol. Phylogenet. Evol. 2017, 109, 93–104.
|
[68] |
Khan, A.; Asaf, S.; Khan, A.L.; Al-Harrasi, A.; Al-Sudairy, O.; AbdulKareem, N.M.; Khan, A.; Shehzad, T.; Alsaady, N.; Al-Lawati, A.; Al-Rawahi, A.; Shinwari, Z.K. First complete chloroplast genomics and comparative phylogenetic analysis of Commiphora gileadensis and C. foliacea: Myrrh producing trees. PLoS One. 2019, 14, e0208511.
|
[69] |
Yang, Z.; Wang, G.X.; Ma, Q.H.; Ma, W.X.; Liang, L.S.; Zhao, T.T. The complete chloroplast genomes of three Betulaceae species: implications for molecular phylogeny and historical biogeography. Peer J. 2019, 7, e6320.
|
[70] |
Liu, H.; Wei, J.P.; Yang, T.; Mu, W.X.; Song, B.; Yang, T.; Fu, Y.; Wang, X.B.; Hu, G.H.; Li, W.S.; Zhou, H.C.; Chang, Y.; Chen, X.L.; Chen, H.Y.; Cheng, L.; He, X.F.; Cai, H.C.; Cai, X.C.; Wang, M.; Li, Y.; Sahu, S.K.; Yang, J.L.; Wang, Y.; Mu, R.C.; Liu, J.; Zhao, J.M.; Huang, Z.H.; Xu, X.; Liu, X. Molecular digitization of a botanical garden: high-depth whole-genome sequencing of 689 vascular plant species from the Ruili Botanical Garden. GigaScience. 2019, 8, giz007. DOI: 10.1093/gigascience/giz007.
|
[71] |
Zhao, Y.J.; Cao, Y.; Wang, J.; Xiong, Z. Transcriptome sequencing of Pinus kesiya var. langbianensis and comparative analysis in the Pinus phylogeny. BMC Genom. 2018, 19, 725.
|
[72] |
Olsson, S.; Pinosio, S.; González-Martínez, S.C.; Abascal, F.; Mayol, M.; Grivet, D.; Vendramin, G.G. De novo assembly of English yew (Taxus baccata) transcriptome and its applications for intra- and inter-specific analyses. Plant Mol. Biol. 2018, 97, 337–345.
|
[73] |
Majeed, A.; Singh, A.; Choudhary, S.; Bhardwaj, P. RNAseq-based phylogenetic reconstruction of Taxaceae and Cephalotaxaceae. Cladistics. 2019, 35, 461–468.
|
[74] |
Hao, D.C.; Gu, X.J.; Xiao, P.G.; Peng, Y. Chemical and biological research of Clematis medicinal resources. Chin. Sci. Bull. 2013, 58, 1120–1129.
|
[75] |
Liu, Z.G.; Shao, W.L.; Shen, Y.M.; Ji, M.C.; Chen, W.C.; Ye, Y.; Shen, Y.B. Characterization of new microsatellite markers based on the transcriptome sequencing of Clematis finetiana. Hereditas. 2018, 155, 23.
|
[76] |
Rai, M.; Rai, A.; Kawano, N.; Yoshimatsu, K.; Takahashi, H.; Suzuki, H.; Kawahara, N.; Saito, K.; Yamazaki, M. De novo RNA sequencing and expression analysis of aconitum carmichaelii to analyze key genes involved in the biosynthesis of diterpene alkaloids. Molecules. 2017, 22, 2155.
|
[77] |
Hu, M.; Xiao, P.G. Chemotaxonomic study of Rhododendron. Acta Phytotaxon. Sin. 1992, 30, 226–238.
|
[78] |
Zhou, G.L.; Zhu, P. De novo transcriptome sequencing of Rhododendron molle and identification of genes involved in the biosynthesis of secondary metabolites. BMC Plant Biol. 2020, 20, 414.
|
[79] |
Guo, B.; Xiao, P.G. The flavonoids in Epimedium L. and their taxonomic significance. Acta Phytotaxon. Sin. 1999, 37, 228–243.
|
[80] |
Ma, Y.M.; Chen, X.D.; Guo, B.L. Identification of genes involved in metabolism and signalling of abscisic acid and gibberellins during Epimedium pseudowushanense B.L.Guo seed morphophysiological dormancy. Plant Cell Rep. 2018, 37, 1061–1075.
|
[81] |
Zhao, P.; Zhou, H.J.; Potter, D.; Hu, Y.H.; Feng, X.J.; Dang, M.; Feng, L.; Zulfiqar, S.; Liu, W.Z.; Zhao, G.F.; Woeste, K. Population genetics, phylogenomics and hybrid speciation of Juglans in China determined from whole chloroplast genomes, transcriptomes, and genotyping-by-sequencing (GBS). Mol. Phylogenet. Evol. 2018, 126, 250–265.
|
[82] |
Buti, M.; Moretto, M.; Barghini, E.; Mascagni, F.; Natali, L.; Brilli, M.; Lomsadze, A.; Sonego, P.; Giongo, L.; Alonge, M.; Velasco, R.; Varotto, C.; Šurbanovski, N.; Borodovsky, M.; Ward, J.A.; Engelen, K.; Cavallini, A.; Cestaro, A.; Sargent, D.J. The genome sequence and transcriptome of Potentilla micrantha and their comparison to Fragaria vesca (the woodland strawberry). Gigascience. 2018, 7, giy010.
|
[83] |
Yasodha, R.; Vasudeva, R.; Balakrishnan, S.; Sakthi, A.R.; Abel, N.; Binai, N.; Rajashekar, B.; Bachpai, V.K.W.; Pillai, C.; Dev, S.A. Draft genome of a high value tropical timber tree, Teak (Tectona grandis L. f): insights into SSR diversity, phylogeny and conservation. DNA Res. 2018, 25, 409–419.
|
[84] |
Xu, C.Q.; Liu, H.; Zhou, S.S.; Zhang, D.X.; Zhao, W.; Wang, S.H.; Chen, F.; Sun, Y.Q.; Nie, S.; Jia, K.H.; Jiao, S.Q.; Zhang, R.G.; Yun, Q.Z.; Guan, W.B.; Wang, X.W.; Gao, Q.; Bennetzen, J.L.; Maghuly, F.; Porth, I.; van de Peer, Y.; Wang, X.R.; Ma, Y.P.; Mao, J.F. Genome sequence of Malania oleifera, a tree with great value for nervonic acid production. GigaScience. 2019, 8, giy164.
|
[85] |
Mahesh, H.B.; Subba, P.; Advani, J.; Shirke, M.D.; Loganathan, R.M.; Chandana, S.L.; Shilpa, S.; Chatterjee, O.; Pinto, S.M.; Prasad, T.S.K.; Gowda, M. Multi-omics driven assembly and annotation of the sandalwood (santalum album) genome. Plant Physiol. 2018, 176, 2772–2788.
|
[86] |
Zaman, W.; Saqib, S.; Ullah, F.; Ayaz, A.; Ye, J.F. Phylogenetic approaches may help in finding resources for natural cure. Phytother. Res. 2020, doi: 10.1002/ptr.6787.
|
[87] |
Hao, D.C.; Song, S.M.; Mu, J.; Hu, W.L.; Xiao, P.G. Unearthing microbial diversity of Taxus rhizosphere via MiSeq high-throughput amplicon sequencing and isolate characterization. Sci. Rep. 2016, 6, 22006.
|
[88] |
Hao, D.C.; Zhang, C.R.; Xiao, P.G. The first Taxus rhizosphere microbiome revealed by shotgun metagenomic sequencing. J. Basic Microbiol. 2018, 58, 501–512.
|
[89] |
Hao, D.C.; Xiao, P.G. Rhizosphere microbiota and microbiome of medicinal plants: from molecular biology to omics approaches. Chin. Herb. Med. 2017, 9, 199–217.
|
[90] |
Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549.
|
[91] |
Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA. 2004, 101, 11030–11035.
|
[92] |
Tamura, K.; Kumar, S. Evolutionary distance estimation under heterogeneous substitution pattern among lineages. Mol. Biol. Evol. 2002, 19, 1727–1736.
|
[93] |
Group, T.A.P. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 2009, 161, 105–121.
|
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||