[1] Yang, J.; Li, X.H.; Al-Lamki, R.S.; Southwood, M.; Zhao, J.; Lever, A.M.; Grimminger, F.; Schermuly, R.T.; Morrell, N.W. Smad-dependent and smad-independent induction of Id1 by prostacyclin analogues inhibits proliferation of pulmonary artery smooth muscle cells in vitro and in vivo. Circ. Res. 2010, 107, 252-262.
[2] Lavoie, J.R.; Ormiston, M.L.; Perez-Iratxeta, C.; Courtman, D.W.; Jiang, B.H.; Ferrer, E.; Caruso, P.; Southwood, M.; Foster, W.S.; Morrell, N.W.; Stewart, D.J. Proteomic analysis implicates translationally controlled tumor protein as a novel mediator of occlusive vascular remodeling in pulmonary arterial hypertension. Circulation. 2014, 129, 2125-2135.
[3] Pietra, G.G.; Capron, F.; Stewart, S.; Leone, O.; Humbert, M.; Robbins, I.M.; Reid, L.M.; Tuder, R.M. Pathologic assessment of vasculopathies in pulmonary hypertension. J. Am. Coll. Cardiol. 2004, 43, S25-S32.
[4] Pietra, G.G.; Edwards, W.D.; Kay, J.M.; Rich, S.; Kernis, J.; Schloo, B.; Ayres, S.M.; Bergofsky, E.H.; Brundage, B.H.; Detre, K.M. Histopathology of primary pulmonary hypertension. A qualitative and quantitative study of pulmonary blood vessels from 58 patients in the National Heart, Lung, and Blood Institute, Primary Pulmonary Hypertension Registry. Circulation. 1989, 80, 1198-1206.
[5] Zhao, C.F.; Wang, L.J.; Gao, L.; Xia, W.; Wang, Z.Y.; Li, F.H. Changes and distributions of peptides derived from proadrenomedullin in left-to-right shunt pulmonary hypertension of rats. Circ. J. 2008, 72, 476-481.
[6] Stenmark, K.R.; Fagan, K.A.; Frid, M.G. Hypoxia-induced pulmonary vascular remodeling cellular and molecular mechanisms. Circ. Res. 2006, 99, 675-691.
[7] Hosokawa, S.; Haraguchi, G.; Sasaki, A.; Arai, H.; Muto, S.; Itai, A.; Doi, S.; Mizutani, S.; Isobe, M. Pathophysiological roles of nuclear factor kappa B (NF-kB) in pulmonary arterial hypertension: effects of synthetic selective NF-kB inhibitor IMD-0354. Cardiovasc. Res. 2013, 99, 35-43.
[8] Wang, Y.Y.; Luan, Y.; Zhang, X.; Lin, M.; Zhang, Z.H.; Zhu, X.B.; Ma, Y.; Wang, Y.B. Proteasome inhibitor PS-341 attenuates flow-induced pulmonary arterial hypertension. Clin. Exp. Med. 2014, 14, 321-329.
[9] Jin, U.H.; Suh, S.J.; Chang, H.W.; Son, J.K.; Lee, S.H.; Son, K.H.; Chang, Y.C.; Kim, C.H. Tanshinone IIA from Salvia miltiorrhiza BUNGE inhibits human aortic smooth muscle cell migration and MMP-9 activity through AKT signaling pathway. J. Cell. Biochem. 2008, 104, 15-26.
[10] Kumar, S.; Wei, C.; Thomas, C.M.; Kim, I.K.; Seqqat, R.; Kumar, R.; Baker, K.M.; Jones, W.K.; Gupta, S. Cardiac-specific genetic inhibition of nuclear factor-κB prevents right ventricular hypertrophy induced by monocrotaline. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H1655-H1666.
[11] Luan, Y.; Chao, S.; Ju, Z.Y.; Wang, J.; Xue, X.; Qi, T.G.; Cheng, G.H.; Kong, F. Therapeutic effects of baicalin on monocrotaline-induced pulmonary arterial hypertension by inhibiting inflammatory response. Int. Immunopharmacol. 2015, 26, 188-193.
[12] Shen, Y.C.; Chiou, W.F.; Chou, Y.C.; Chen, C.F. Mechanisms in mediating the anti-inflammatory effects of baicalin and baicalein in human leukocytes. Eur. J. Pharmacol. 2003, 465, 171-181.
[13] Chen, Y.; Hui, H.; Yang, H.; Zhao, K.; Qin, Y.S.; Gu, C.; Wang, X.T.; Lu, N.; Guo, Q.L. Wogonoside induces cell cycle arrest and differentiation by affecting expression and subcellular localization of PLSCR1 in AML cells. Blood. 2013, 121, 3682-3691.
[14] Woo, A.Y.H.; Cheng, C.H.K.; Waye, M.M.Y. Baicalein protects rat cardiomyocytes from hypoxia/reoxygenation damage via a prooxidant mechanism. Cardiovasc. Res. 2005, 65, 244-253.
[15] Lin, L.; Wu, X.D.; Davey, A.K.; Wang, J.P. The anti-inflammatory effect of baicalin on hypoxia/reoxygenation and TNF-α induced injury in cultural rat cardiomyocytes. Phytother. Res. 2010, 24, 429-437.
[16] Zhang, L.; Pu, Z.C.; Wang, J.S.; Zhang, Z.F.; Hu, D.M.; Wang, J.J. Baicalin inhibits hypoxia-induced pulmonary artery smooth muscle cell proliferation via the AKT/HIF-1α/p27-associated pathway. Int. J. Mol. Sci. 2014, 15, 8153-8168.
[17] Dong, L.H.; Wen, J.K.; Miao, S.B.; Jia, Z.H.; Hu, H.J.; Sun, R.H.; Wu, Y.L.; Han, M. Erratum: Baicalin inhibits PDGF-BB-stimulated vascular smooth muscle cell proliferation through suppressing PDGFRβ-ERK signaling and increase in p27 accumulation and prevents injury-induced neointimal hyperplasia. Cell Res. 2011, 21, 1276.
[18] Ikezoe, T.; Chen, S.S.; Heber, D.; Taguchi, H.; Koeffler, H.P. Baicalin is a major component of PC-SPES which inhibits the proliferation of human cancer cells via apoptosis and cell cycle arrest. Prostate. 2001, 49, 285-292.
[19] D’Alto, M.; Mahadevan, V.S. Pulmonary arterial hypertension associated with congenital heart disease. Eur. Respir. Rev. 2012, 21, 328-337.
[20] Dai, H.L.; Guo, Y.; Guang, X.F.; Xiao, Z.C.; Zhang, M.; Yin, X.L. The changes of serum angiotensin-converting enzyme 2 in patients with pulmonary arterial hypertension due to congenital heart disease. Cardiology. 2013, 124, 208-212.
[21] Li, L.; Wei, C.; Kim, I.K.; Janssen-Heininger, Y.; Gupta, S. Inhibition of nuclear factor-κB in the lungs prevents monocrotaline-induced pulmonary hypertension in mice. Hypertens. Dallas Tex. 2014, 63, 1260-1269.
[22] Zhang, X.; Wang, Z.S.; Luan, Y.; Lin, M.; Zhu, X.B.; Ma, Y.; Zhang, Z.H.; Wang, Y.B. The effect of PS-341 on pulmonary vascular remodeling in high blood flow-induced pulmonary hypertension. Int. J. Mol. Med. 2014, 33, 105-110.
[23] Chen, Y.; Hui, H.; Yang, H.; Zhao, K.; Qin, Y.S.; Gu, C.; Wang, X.T.; Lu, N.; Guo, Q.L. Wogonoside induces cell cycle arrest and differentiation by affecting expression and subcellular localization of PLSCR1 in AML cells. Blood. 2013, 121, 3682-3691.
[24] Morrell, N.W.; Bloch, D.B.; Dijke, P.T.; Goumans, M.J.T.H.; Hata, A.; Smith, J.; Yu, P.B.; Bloch, K.D. Targeting BMP signalling in cardiovascular disease and anaemia. Nat. Rev. Cardiol. 2016, 13, 106.
[25] Lowery, J.W.; Frump, A.L.; Anderson, L.; DiCarlo, G.E.; Jones, M.T.; de Caestecker, M.P. ID family protein expression and regulation in hypoxic pulmonary hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1463-R1477.
[26] Ciumas, M.; Eyries, M.; Poirier, O.; Maugenre, S.; Dierick, F.; Gambaryan, N.; Montagne, K.; Nadaud, S.; Soubrier, F. Bone morphogenetic proteins protect pulmonary microvascular endothelial cells from apoptosis by upregulating α-B-crystallin. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2577-2584.
[27] Kumar, S.; Wei, C.; Thomas, C.M.; Kim, I.K.; Seqqat, R.; Kumar, R.; Baker, K.M.; Jones, W.K.; Gupta, S. Cardiac-specific genetic inhibition of nuclear factor-κB prevents right ventricular hypertrophy induced by monocrotaline. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H1655-H1666.
[28] Hurst, L.A.; Dunmore, B.J.; Long, L.; Crosby, A.; Al-Lamki, R.; Deighton, J.; Southwood, M.; Yang, X.D.; Nikolic, M.Z.; Herrera, B.; Inman, G.J.; Bradley, J.R.; Rana, A.A.; Upton, P.D.; Morrell, N.W. TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling. Nat. Commun. 2017, 8, 14079.
[29] Murphy, N.; Gaynor,K.U.; Rowan,S.C.; Walsh, S.M.; Fabre, A.; Boylan, J.; Keane, M.P.; McLoughlin, P. Altered expression ofbone morphogenetic protein accessory proteins in murine and human pulmonary fibrosis. Am. J. Pathol. 2016, 186, 600-615.
[30] Arciniegas, E.; Frid, M.G.; Douglas, I.S.; Stenmark, K.R. Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am. J. Physiol. Lung Cell Mol. Physiol. 2007, 293, L1-L8.
[31] Willis, B.C.; Borok, Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am. J. Physiol. Lung Cell Mol. Physiol. 2007, 293, L525-L534.
[32] Alastalo, T.P.; Li, M.L.; Perez, V.D.J.; Pham, D.; Sawada, H.; Wang, J.K.; Koskenvuo, M.; Wang, L.L.; Freeman, B.A.; Chang, H.Y.; Rabinovitch, M. Disruption of PPARγ/β-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. J. Clin. Investig. 2011, 121, 3735-3746. |