[1] Edwards, J.R.; Betts, M.J. Carbapenems: the pinnacle of the β-lactam antibiotics or room for improvement? J. Antimicrob. Chemother. 2000, 45, 1-4.
[2] Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents. Chemother. 2009, 53, 5046-5054.
[3] Johnson, A.P.; Woodford, N. Global spread of antibiotic resistance: The example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J. Med. Microbiol. 2013, 62, 499-513.
[4] Asad, U.K.; Lubna, M.; Raffaele, Z. Structure, genetics and worldwide spread of new delhi metallo-β-lactamase (NDM): A threat to public health. Bmc. Microbiol. 2017, 17, 101.
[5] Dortet, L.; Poirel, L.; Nordmann, P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed. Res. Int. 2014, 2014, 249856.
[6] Rotondo, C.M.; Wright, G.D. Inhibitors of metallo-β-lactamases. Curr. Opin. Microbiol. 2017, 39, 96-105.
[7] Liao, D.H.; Yang, S.Q.; Wang, J.N.; Zhang, J.; Hong, B.K.; Wu, F.; Lei, X.G. Total synthesis and structural reassignment of Aspergillomarasmine A. Angew. Chem. Int. Ed. 2016, 128, 4363-4367.
[8] King, A.M.; Reid-Yu. S.A.; Wang, W.L.; King, D.T.; De Pascale, G.D.; Strynadka, N.C.; Walsh, T.R.; Coombes. B.K.; Wright, G.D. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature. 2014, 510, 503-506.
[9] Zhang, E.; Wang, M.M.; Huang, S.C.; Xu, S.M.; Cui, D.Y.; Bo, Y.L.; Bai, P.Y.; Hua, Y.G.; Xiao, C.L.; Qin, S.S. NOTA analogue: A first dithiocarbamate inhibitor of metallo-β-lactamases. Bioorg. Med. Chem. Lett. 2018, 28, 214-221.
[10] Somboro, A.M.; Tiwari, D.; Bester, L.A.; Parboosing, P.; Chonco, L.; Kruger, H.G.; Arvidsson. P.I.; Govender, T.; Naicker, T.; Essack, S.Y. NOTA: a potent metallo-β-lactamase inhibitor. J. Antimicrob. Chemother. 2015, 70, 1594-1596.
[11] González, M.M.; Kosmopoulou, M.; Mojica, M.F.; Castillo, V.; Hinchliffe, P.; Pettinati, I.; Brem, J.; Schofield, C.J.; Mahler, G.; Bonomo, R.A.; Llarrull, L.I.; Spencer, J.; Vila, A.J. Bisthiazolidines: substrate-mimicking scaffold as an inhibitor of the NDM-1 carbapenemase. ACS Infect. Dis. 2015, 1, 544-554.
[12] Yamada, K.; Yanagihara, K.; Kaku, N.; Harada, Y.; Migiyama, Y.; Nagaoka, K.; Morinaga, Y.; Nakamura, S.; Imamura, Y.; Miyazaki, T.; Izumikawa, K.; Kakeya, H.; Hasegawa, H.; Yasuoka, A.; Kohno, S. In vivo efficacy of biapenem with ME1071, a novel metallo-β-lactamase (MBL) inhibitor, in a murine model mimicking ventilator-associated pneumonia caused by MBL-producing Pseudomonas aeruginosa. Int. J. Antimicrob. Agents. 2013, 42, 238-243.
[13] Livermore, D.M.; Mushtaq, S.; Morinaka, A.; Ida, T.; Maebashi, K.; Hope, R. Activity of carbapenems with ME1071 (disodium 2,3-diethylmaleate); against Enterobacteriaceae and Acinetobacter spp. with carbapenemases, including NDM enzymes. J. Antimicrob. Chemother. 2013, 68, 153-158.
[14] Ishii, Y.; Eto, M.; Mano, Y.; Tateda, K.; Yamaguchi, K. In vitro potentiation of carbapenems with ME1071, a novel metallo-beta-lactamase inhibitor, against metallo-beta-lactamase-producing Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 2011, 54, 3625-3629.
[15] Chiou, J.; Wan, S.; Chan, K.; So, P.; He D.; Chan, E.W.; Chan, T.; Wong, K.; Tao, J.; Chen, S. Ebselen as a potent covalent inhibitor of New Delhi metallo-β-lactamase (NDM-1). Chem. Commun. (Camb.). 2015, 51, 9543-9546.
[16] Liu, S.; Zhou, Y.; Niu, X .; Wang, T.; Li, J.; Liu, Z.; Wang, J.; Tang, S.; Wang, Y.; Deng, X. Magnolol restores the activity of meropenem against NDM-1-producing Escherichia coli by inhibiting the activity of metallo-beta-lactamase. Cell. Death. Discov. 2018, 4, 28.
[17] Shi, X.F.; Wang, M.M.; Huang, S.C.; Han, J.X.; Chu, W.C.; Xiao, C.L.; Zhang, E.; Qin, S.S. H2depda: An acyclic adjuvant potentiates meropenem activity in vitro against metallo-beta-lactamase-producing enterobacterales. Eur. J. Med. Chem. 2019, 167, 367-376. |