Journal of Chinese Pharmaceutical Sciences ›› 2019, Vol. 28 ›› Issue (3): 174-185.DOI: 10.5246/jcps.2019.03.017
• Original articles • Previous Articles Next Articles
Yi Ouyang1,2, Jing Zhang1, Hongfei Wu1*, Min Dai1
Received:
2018-12-15
Revised:
2019-03-06
Online:
2019-03-30
Published:
2019-03-12
Contact:
Tel.: +86-0551-68129184, E-mail: wuhongfei2009@126.com
Supported by:
National Nature Science Foundation of China (Grant No. 81773937, 81873038).
CLC Number:
Supporting:
Yi Ouyang, Jing Zhang, Hongfei Wu, Min Dai. Absorption mechanism of paeonol nanoemulsion using in vitro intestinal cell models[J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(3): 174-185.
[1] Li, H.K.; Dai, M.; Jia, W. Paeonol attenuates high-fat-diet-induced atherosclerosis in rabbits by anti-inflammatory activity. Planta. Med. 2009, 75, 7-11.
[2] Song, A.W.; Wu, H.F.; Dai, M. Paeonol attenuates progression of atherosclerotic lesion formation through lipid regulation, anti-inflammatory and antioxidant activities. J. Chin. Pharm. Sci. 2018, 27, 565-575.
[3] Lee, B.; Shin, Y.W.; Bae, E.A.; Han, S.J.; Kim, J.S.; Kang, S.S.; Kim, D.H. Antiallergic effect of the root of Paeonia lactiflora and its constituents paeoniflorin and paeonol. Arch. Pharm. Res. 2008, 31, 445-450.
[4] Himaya, S.W.; Ryu, B.; Qian, Z.J.; Kim, S.K. Paeonol from Hippocampus kuda Bleeler suppressed the neuro-inflammatory responses in vitro via NF-κB and MAPK signaling pathways. Toxicol. In. Vitro. 2012, 26, 878-887.
[5] Zong, S.Y.; Pu, Y.Q.; Xu, B.L.; Zhang, T.; Wang, B. Study on the physicochemical properties and anti-inflammatory effects of paeonol in rats with TNBS-induced ulcerative colitis. Int. Immunopharmacol. 2017, 42, 32-38.
[6] Lau, C.H.; Chan, C.M.; Chan, Y.W.; Lau, K.M.; Lau, T.W.; Lam, F.C.; Law, W.T.; Che, C.T.; Leung, P.C.; Fung, K.P.; Ho, Y.Y.; Lau, C.B. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol. Phytomedicine. 2007, 14, 778-784.
[7] Yao, J.J.; Zhang, Y.X.; Hu, Q.M.; Zeng, D.C.; Hua, F.; Meng, W.; Wang, W.Y.; Bao, G.H. Optimization of paeonol-loaded poly (butyl-2-cyanoacrylate) nanocapsules by central composite design with response surface methodology together with the antibacterial properties. Eur. J. Pharm. Sci. 2017, 101, 189-199.
[8] Chen, Z.X.; Li, B.; Liu, T.; Wang, X.; Zhu, Y.; Wang, L.; Wang, X.H.; Niu, X.; Xiao, Y.; Sun, Q. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers. Eur. J. Pharm. Sci. 2017, 99, 240-245.
[9] Chen, C.; Jia, F.; Hou, Z.B.; Ruan, S.; Lu, Q.B. Delivery of paeonol by nanoparticles enhances its in vitro and in vivo antitumor effects. Int. J. Nanomedicine. 2017, 12, 6605-6616.
[10] Jiao, Y.; Zheng, X.Q.; Chang, Y.; Li, D.J.; Sun, X.H.; Liu, X.L. Zein-derived peptides as nanocarriers to increase the water solubility and stability of lutein. Food Funct. 2018, 9, 117-123.
[11] Freag, M.S.; Saleh, W.M.; Abdallah, O.Y. Self-assembled phospholipid-based phytosomal nanocarriers as promising platforms for improving oral bioavailability of the anticancer celastrol. Int. J. Pharm. 2018, 535, 18-26.
[12] Fares, A.R.; Elmeshad, A.N.; Kassem, M.A.A. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/ F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study. Drug Deliv. 2018, 25, 132-142.
[13] Zhang, Q.H.; Polyakov, N.E.; Chistyachenko, Y.S.; Khvostov, M.V.; Frolova, T.S.; Tolstikova, T.G.; Dushkin, A.V.; Su, W.K. Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug. Deliv. 2018, 25, 198-209.
[14] Lu, Z.; Bu, C.P.; Hu, W.C.; Zhang, H.; Liu, M.R.; Lu, M.Q.; Zhai, G.X. Preparation and in vitro and in vivo evaluation of quercetin-loaded mixed micelles for oral delivery. Biosci. Biotechnol. Biochem. 2018, 82, 238-246.
[15] Hao, YL.; Zhong, T.; Du, R.; Zhang, H.; Liu, BL.; Zhang, X. The cellular uptake and anti-tumor activity of conjugated linoleic acid-paclitaxel loaded iRGD-modified lysolipid-containing thermosensitive liposomes. J. Chin. Pharm. Sci. 2019, 28, 121-133.
[16] Bu, Y.Z.; Mu, L.M.; Liu, L.; Lu, W.L. Construction of folate-conjugated epirubicin liposomes for enhancing the cellular uptake and the co-localization with nuclei of invasive breast cancer cells. J. Chin. Pharm. Sci. 2018, 27, 229-240
[17] Wu, L.; Bi, Y.J.; Wu, H.F. Formulation optimization and the absorption mechanisms of nanoemulsion in improving baicalin oral exposure. Drug. Dev. Ind. Pharm. 2018, 44, 266-275.
[18] Gundogdu, E.; Karasulu, H.Y.; Koksal, C.; Karasulu, E. The novel oral imatinib microemulsions: physical properties, cytotoxicity activities and improved Caco-2 cell permeability. J. Microencapsul. 2013, 30, 132-142.
[19] Li, Y.J.; Hu, X.B.; Lu, X.L.; Liao, D.H.; Tang, T.T.; Wu, J.Y.; Xiang, D.X. Nanoemulsion-based delivery system for enhanced oral bioavailability and Caco-2 cell monolayers permeability of berberine hydrochloride. Drug Deliv. 2017, 24, 1868-1873.
[20] Hong, L.; Zhou, C.L.; Chen, F.P.; Han, D.; Wang, C.Y.; Li, J.X.; Chi, Z.; Liu, C.G. Development of a carboxymethyl chitosan functionalized nanoemulsion formulation for increasing aqueous solubility, stability and skin permeability of astaxanthin using low-energy method. J. Microencapsul. 2017, 34, 707-721.
[21] Piazzini, V.; Monteforte, E.; Luceri, C.; Bigagli, E.; Bilia, A.R.; Bergonzi, M.C. Nanoemulsion for improving solubility and permeability of Vitex agnus-castus extract: formulation and in vitro evaluation using PAMPA and Caco-2 approaches. Drug Deliv. 2017, 24, 380-390.
[22] Chen, S.F; Zhang, J.; Wu, L.; Wu, H.F; Dai, M. Paeonol nanoemulsion for enhanced oral bioavailability: Optimization and mechanism. Nanomedicine(Lond). 2018, 13, 269-282.
[23] Hussain, N. Regulatory aspects in the pharmaceutical development of nanoparticle drug delivery systems designed to cross the intestinal epithelium and M-cells. Int. J. Pharm. 2016, 514, 15-23.
[24] Kyd, J.M.; Cripps, A.W. Functional differences between M cells and enterocytes in sampling luminal antigens. Vaccine. 2008, 26, 6221-6224.
[25] Brück, S.; Strohmeier, J.; Busch, D.; Drozdzik, M.; Oswald, S. Caco-2 cells-expression, regulation and function of drug transporters compared with human jejunal tissue. Biopharm. Drug. Dispos. 2017, 38, 115-126.
[26] Min, H.P.; Niu, M.M.; Zhang, W.L.; Yan, J.; Li, J.C.; Tan, X.Y.; Li, B.; Su, M.X.; Di, B.; Yan, F. Emodin reverses leukemia multidrug resistance by competitive inhibition and downregulation of P-glycoprotein. PLoS One. 2017, 12, e0187971.
[27] Lapierre, L.A. The molecular structure of the tight junction. Adv. Drug. Deliv. Rev. 2000, 41, 255-264.
[28] Ferraretto, A.; Bottani, M.; De Luca,.P.; Cornaghi, L.; Arnaboldi, F.; Maggioni, M.; Fiorilli, A.; Donetti, E. Morphofunctional properties of a differentiated Caco2/HT-29 co-culture as an in vitro model of human intestinal epithelium. Biosci. Rep. 2018, 38, BSR20171497.
[29] Noda, S.; Yamada, A.; Nakaoka, K.; Goseki-Sone, M. 1-alpha,25-Dihydroxyvitamin D3 up-regulates the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells and may be an important regulator of their expression in gut homeostasis. Nutr. Res. 2017, 46, 59-67.
[30] Gullberg, E.; Leonard, M.; Karlsson, J.;Hopkins, A.M.; Bravden, D.; Baird, A.W.; Artursson, P. Expression of specific markers and particle transport in a new human intestinal M-cell model. Biochem. Biophys. Res. Commun. 2000, 279, 808-813.
[31] Brocks, D.R.; Davies, N.M. Lymphatic Drug Absorption via the Enterocytes: Pharmacokinetic Simulation, Modeling, and Considerations for Optimal Drug Development. J. Pharm. Pharm. Sci. 2018, 21, 254s-270s.
[32] des Rieux, A.; Fievez, V.; Théate, I.; Mast, J.; Préat, V.; Schneider, Y.J. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur. J. Pharm. Sci. 2007, 30, 380-391.
[33] Artursson, P.; Karlsson, J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 1991, 175, 880-885.
[34] Liu, Y.X.; Wang, Y.F.; Peng, Y.M.; Liu, B.J.; Ma, F.; Jiang, J.H.; Wang, Q.D.; Chang, J.B. Effects of the antiretroviral drug 2'-deoxy-2'-β-fluoro-4'-azidocytidine (FNC) on P-gp, MRP2 and BCRP expressions and functions. Pharmazie. 2018, 73, 503-507.
[35] Roger, E.; Lagarce, F.; Garcion, E.; Benoit, J.P. Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. J. Control. Release. 2009, 140, 174-181. |
[1] | Ying Fu, Simo Liu, Yan Ma, Nannan Wu. Canagliflozin, an inhibitor of sodium-glucose co-transporter 2, advances in the treatment of type 2 diabetes [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(8): 569-588. |
[2] | Yanrong Ma, Mingyan Xin, Juanli Wu, Dangju Wang, Huan Wang, Xin'an Wu. Changes in renal excretion pathways in rats with adenine-induced chronic renal failure [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(4): 319-333. |
[3] | Jian Zhang, Mengmeng Qin, Dan Yang, Wenbing Dai, Hua Zhang, Xueqing Wang, Bing He, Qiang Zhang. Proteomic analysis on cellular response induced by nanoparticles reveals the nano-trafficking pathway through epithelium [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(2): 107-118. |
[4] | State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center. The group of Professor Qiang Zhang and Bing He has made important progress in nanodrug transport mechanism [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(10): 857-858. |
[5] | Qi Liu, Leqi Wang, Xinping Hu, Chuhang Zhou, Yingwei Tang, Yining Ma, Xiaoxiao Wang, Yan Liu. Fabrication of deoxycholic acid-modified polymeric micelles and their transmembrane transport [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(1): 17-26. |
[6] | Chuhang Zhou, Xinping Hu, Qi Liu, Leqi Wang, Yuanhang Zhou, Yao Jin, Yan Liu. Enhanced tumor-targeted delivery of anticancer drugs by folic acid-conjugated pH-sensitive polymeric micelles [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(9): 626-636. |
[7] | Yao Jin, Qi Liu, Chuhang Zhou, Shidi Han, Yuanhang Zhou, Xinping Hu, Leqi Wang, Yan Liu. Construction and characterization of intestinal oligopeptide transporter PepT1-targeted polymeric micelles for enhanced intestinal absorption of poorly water-soluble agents [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(8): 561-570. |
[8] | AnPu Yang, Bei Wei, Jiafang Song, Xiangfu Guo, Yuxi Cheng, Bing He, Hua Zhang, Xueqing Wang, Qiang Zhang. Construction of a Caco-2/EAhy926 cell tandem compound model and its application in mechanism study of nanoparticle transcytosis [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(7): 478-489. |
[9] | Chuyu He, Yao Jin, Yunqiang Deng, Yang Zou, Shidi Han, Chuhang Zhou, Yuanhang Zhou, Xinru Li, Yanxia Zhou, Yan Liu. Preparation and characterization of intestinal transporter-targeted polymeric micelles [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(7): 490-497. |
[10] | Yongwen Jin, Zhi Rao, Yanfang Wu, Guoqiang Zhang, Axi Shi, Yuhui Wei, Xin’an Wu. Acetaminophen-induced hepatotoxicity in rats is correlated with the accumulation of bile acids: an underlying mechanism [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(7): 498-509. |
[11] | Yunqiang Deng, Yao Jin, Chuyu He, Yang Zou, Yuanhang Zhou, Shidi Han, Chuhang Zhou, Qi Liu, Xinru Li, Yanxia Zhou, Yan Liu . Preparation and characterization of intestine PepT1-targeted calcium carbonate nanoparticles [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(6): 397-407. |
[12] | Yingzi Bu, Limin Mu, Lei Liu, Wanliang Lu. Construction of folate-conjugated epirubicin liposomes for enhancing the cellular uptake and the co-localization with nuclei of invasive breast cancer cells [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(4): 229-240. |
[13] | Hongzhe Fu, Jiafang Song, Ge Song, Siyang Song, Zhipu Fan, Anpu Yang, Bing He, Wenbing Dai, Hua Zhang, Xueqing Wang, Qiang Zhang. The impact of Rho GTPases on the cell uptake of single-walled carbon nanohorns [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(6): 395-403. |
[14] | Mengmeng Qin, Yifan Li, Bing He, Bei Wei, Wenbing Dai, Hua Zhang, Xueqing Wang, Qiang Zhang. The adsorption of cellular proteins affects the uptake and cellular distribution of gold nanoparticles [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(9): 651-659. |
[15] | Chong Qiu, Shihe Cui, Jing Sun, Jiancheng Wang. In vitro comparative evaluation of three CLD/siRNA nanoplexes prepared by different processes [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(9): 660-668. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 109
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 262
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||