Journal of Chinese Pharmaceutical Sciences ›› 2025, Vol. 34 ›› Issue (11): 1003-1023.DOI: 10.5246/jcps.2025.11.075
• Original articles • Previous Articles Next Articles
Huijie Lv1,2,#, Jun Peng1,2,#, Xu Huang1, Tuo Xu3, Tianchen Zhang2,*(
), Hongyan Ling4,*(
)
Received:2025-07-18
Revised:2025-08-24
Accepted:2025-09-17
Online:2025-12-02
Published:2025-12-02
Contact:
Tianchen Zhang, Hongyan Ling
About author:# Huijie Lv and Jun Peng contributed equally to this work.
Supported by:Supporting:
Huijie Lv, Jun Peng, Xu Huang, Tuo Xu, Tianchen Zhang, Hongyan Ling. Dihydromyricetin reverses cognitive dysfunction in type 2 diabetic rats via inhibition of the JNK-ERS axis[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(11): 1003-1023.
| [1] |
Majety, P.; Lozada Orquera, F.A.; Edem, D.; Hamdy, O. Pharmacological approaches to the prevention of type 2 diabetes mellitus. Endocrinol. Lausanne. 2023, 14, 1118848.
|
| [2] |
Gunawardena, H.; Silva, R.; Sivakanesan, R. Insulin resistance and dyslipidemia predicts the antioxidant status of individuals with type 2 diabetes mellitus. IDF World Diabetes Congress. 2019.
|
| [3] |
Hanson, A.J.; Rubinow, K.B. Optimizing clinical phenotyping to better delineate the complex relationship between type 2 diabetes and Alzheimer’s disease. Clin. Transl. Sci. 2021, 14, 1681–1688.
|
| [4] |
Wu, W.J.; Qiu, J.; Wang, A.L.; Li, Z.G. Impact of whole cereals and processing on type 2 diabetes mellitus: a review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1447–1474.
|
| [5] |
Sun, Y.; Liu, S.S.; Yang, S.W.; Chen, C.; Yang, Y.T.; Lin, M.Y.; Liu, C.; Wang, W.M.; Zhou, X.D.; Ai, Q.D.; Wang, W.; Chen, N.H. Mechanism of dihydromyricetin on inflammatory diseases. Front. Pharmacol. 2022, 12, 794563.
|
| [6] |
Xie, J.B.; Zhang, T.T.; Li, P.C.; Wang, D.; Liu, T.; Xu, S.L. Dihydromyricetin attenuates cerebral ischemia reperfusion injury by inhibiting SPHK1/mTOR signaling and targeting ferroptosis. Drug Des. Devel. Ther. 2022, 16, 3071–3085.
|
| [7] |
Ding, H.R.; Cheng, Q.C.; Fang, X.; Wang, Z.Y.; Fang, J.Y.; Liu, H.C.; Zhang, J.W.; Chen, C.H.; Zhang, W.G. Dihydromyricetin alleviates ischemic brain injury by antagonizing pyroptosis in rats. Neurotherapeutics. 2023, 20, 1847–1858.
|
| [8] |
Wei, Y.C.; Hu, Y.H.; Qi, K.M.; Li, Y.; Chen, J.X.; Wang, R.G. Dihydromyricetin improves LPS-induced sickness and depressive-like behaviors in mice by inhibiting the TLR4/Akt/HIF1a/NLRP3 pathway. Behav. Brain Res. 2022, 423, 113775.
|
| [9] |
Guo, C.H.; Cao, T.; Zheng, L.T.; Waddington, J.L.; Zhen, X.C. Development and characterization of an inducible dicer conditional knockout mouse model of Parkinson’s disease: validation of the antiparkinsonian effects of a sigma-1 receptor agonist and dihydromyricetin. Acta Pharmacol. Sin. 2020, 41, 499–507.
|
| [10] |
Ren, Z.X.; Zhao, Y.F.; Cao,T. Dihydromyricetin protects neurons in MPTP-induced Parkinson disease via suppressing activity of glycogen synthase kinase-3 beta. Chin. J. Pharm. Toxicol. 2016, 30, 441–441.
|
| [11] |
Liu, M.M.; Guo, H.; Li, Z.Y.; Zhang, C.H.; Zhang, X.P.; Cui, Q.H.; Tian, J.Z. Molecular level insight into the benefit of myricetin and dihydromyricetin uptake in patients with Alzheimer’s diseases. Aging Neurosci. 2020, 12, 601603.
|
| [12] |
Lv, H.J.; Zhu, Z.M.; Chen, W.Z. Dihydromyricetin inhibits high glucose induced PC12 cells apoptosis by down-regulating JNK Pathway. Prog. Biochem. Biophys. 2018, 45, 663–671.
|
| [13] |
Kao, S.J.; Lee, W.J.; Chang, J.H.; Chow, J.M.; Chung, C.L.; Hung, W.Y.; Chien, M.H. Suppression of reactive oxygen species-mediated ERK and JNK activation sensitizes dihydromyricetin-induced mitochondrial apoptosis in human non-small cell lung cancer. Environ Toxicol. 2017, 32, 1426–1438.
|
| [14] |
Huang, Y.; You, S.M.; S hen, Y.B. Dihydromyricetin enhances the sensitivity of drug-resistant malignant melanoma cells to carboplatin via the SIRT1/JNK pathway. Chin. J. Modern Appl. Pharm. 2017, 34, 1689–1694.
|
| [15] |
Park, E.; Chun, H.S. Protective effects of quercetin on dieldrin-induced endoplasmic reticulum stress and apoptosis in dopaminergic neuronal cells. Neuroreport. 2016, 27, 1140–1146.
|
| [16] |
Tsai, J.J.; Kuo, H.C.; Lee, K.F.; Tsai, T.H. Glycyrrhizin represses total parenteral nutrition-associated acute liver injury in rats by suppressing endoplasmic reticulum stress. Int. J. Mol. Sci. 2013, 14, 12563–12580.
|
| [17] |
Takano, K.; Tabata, Y.; Kitao, Y.; Murakami, R.; Suzuki, H.; Yamada, M.; Iinuma, M.; Yoneda, Y.; Ogawa, S.; Hori, O. Methoxyflavones protect cells against endoplasmic reticulum stress and neurotoxin. Am. J. Physiol. Cell Physiol. 2007, 292, C353–C361.
|
| [18] |
Kwon, K.; Kwon, Y.S.; Kim, S.W.; Yu, K.; Lee, K.H.; Kwon, O.Y. Luteolin-induced apoptosis through activation of endoplasmic reticulum stress sensors in pheochromocytoma cells. Mol. Med. Rep. 2017, 16, 380–386.
|
| [19] |
Liu, H.; Hurile, B.; Xiong, Y.; Wei, C.X.; Xuan, L.Y.; Wang, Y.; Zhao, M. Effects of total flavonids of astragalus on arrhythmia, endoplasmic reticulum stress in mice with viral myocarditis. Chin. J. Appl. Physiol. 2018, 34, 16–18.
|
| [20] |
Quiñones, M.; Al-Massadi, O.; Folgueira, C.; Bremser, S.; Gallego, R.; Torres-Leal, L.; Haddad-Tóvolli, R.; García-Caceres, C.; Hernandez-Bautista, R.; Lam, B.Y.H.; Beiroa, D.; Sanchez-Rebordelo, E.; Senra, A.; Malagon, J.A.; Valerio, P.; Fondevila, M.F.; Fernø, J.; Malagon, M.M.; Contreras, R.; Pfluger, P.; Brüning, J.C.; Yeo, G.; Tschöp, M.; Diéguez, C.; López, M.; Claret, M.; Kloppenburg, P.; Sabio, G.; Nogueiras, R. p53 in AgRP neurons is required for protection against diet-induced obesity via JNK1. Nat. Commun. 2018, 9, 3432.
|
| [21] |
Chung, Y.; Lee, H. Correlation between Alzheimer’s disease and type 2 diabetes using non-negative matrix factorization. Sci. Rep. 2021, 11, 15265.
|
| [22] |
Cukierman, T.; Gerstein, H.C.; Williamson, J.D. Cognitive decline and dementia in diabetes: systematic overview of prospective observational studies. Diabetologia. 2005, 48, 2460–2469.
|
| [23] |
Cheng, G.; Huang, C.; Deng, H.; Wang, H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern. Med. J. 2012, 42, 484–491.
|
| [24] |
Liu, Z.C.; Fu, Z.Q.; Song, J.; Zhang, J.Y.; Wei, Y.P.; Chu, J.; Han, L.; Qu, N.; Wang, J.Z.; Tian, Q. Bip enhanced the association of GSK-3β with tau during ER stress both in vivo and in vitro. J. Alzheimers Dis. 2012, 29, 727–740.
|
| [25] |
Resende, R.; Ferreiro, E.; Pereira, C.; Oliveira, C.R. ER stress is involved in Aβ-induced GSK-3β activation and tau phosphorylation. J. Neurosci. Res. 2008, 86, 2091–2099.
|
| [26] |
Buccarello, L.; Sclip, A.; Sacchi, M.; Castaldo, A.M.; Bertani, I.; ReCecconi, A.; Maestroni, S.; Zerbini, G.; Nucci, P.; Borsello, T. The c-Jun N-terminal kinase plays a key role in ocular degenerative changes in a mouse model of Alzheimer disease suggesting a correlation between ocular and brain pathologies. Oncotarget. 2017, 8, 83038–83051.
|
| [27] |
Bitel, C.L.; Kasinathan, C.; Kaswala, R.H.; Klein, W.L.; Frederikse, P.H. Amyloid-β and tau pathology of Alzheimer’s disease induced by diabetes in a rabbit animal model. J. Alzheimers Dis. 2012, 32, 291–305.
|
| [28] |
Kim, B.; Backus, C.; Oh, S.; Feldman, E.L. Hyperglycemia-induced tau cleavage in vitro and in vivo: a possible link between diabetes and Alzheimer’s disease. J. Alzheimers Dis. 2013, 34, 727–739.
|
| [29] |
Jakobsen, J.; Sidenius, P.; Gundersen, H.J.G.; Østerby, R. Quantitative changes of cerebral neocortical structure in insulin-treated long-term streptozocin-induced diabetes in rats. Diabetes. 1987, 36, 597–601.
|
| [30] |
Garris, D.R.; Diani, A.R.; Smith, C.; Gerritsen, G.C. Depopulation of the ventromedial hypothalamic nucleus in the diabetic Chinese hamster. Acta Neuropathol. 1982, 56, 63–66.
|
| [31] |
Liang, J.Y.; Guo, F.; Cao, S.F.; Zhao, K.; Zhao, K.X.; Wang, H.F.; Shao, X.F.; Wei, Y.Y.; Zhang, C.D.; Zheng, Y.H.; Xu, F. γ-Aminobutyric acid (GABA) alleviated oxidative damage and programmed cell death in fresh-cut pumpkins. Plant Physiol. Biochem. 2022, 180, 9–16.
|
| [32] |
Anarkooli, I.J.; Ganji, H.B.; Pourheidar, M. The protective effects of insulin and natural honey against hippocampal cell death in streptozotocin-induced diabetic rats. J. Diabetes Res. 2014, 2014, 491571.
|
| [33] |
Xu, H.; Li, H.; Liu, D.X.; Wen, W.; Xu, M.; Frank, J.A.; Chen, J.; Zhu, H.N.; Grahame, N.J.; Luo, J. Chronic voluntary alcohol drinking causes anxiety-like behavior, thiamine deficiency, and brain damage of female crossed high alcohol preferring mice. Pharmacol. 2021, 12, 614396.
|
| [34] |
Mao, X.; Meng, J.; Mao, J. Zhang, H.L. Effects of acupuncture on endoplasmic reticulum stress and apoptosis in CA1 region of hippocampus of rats with Alzheimer’s disease. J. Hainan Med. Coll. 2019, 25, 1209–1214.
|
| [35] |
Montibeller, L.; de Belleroche, J. Amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD) are characterised by differential activation of ER stress pathways: focus on UPR target genes. Cell Stress. Chaperones. 2018, 23, 897–912.
|
| [36] |
Stutzbach, L.; Hawk, M.; Gilman, S.; Lee, V.; Trojanowski, J.; Schellenberg, G. ER stress in Alzheimer’s disease and PSP: common disease mechanism? Alzheimers. Dement. 2012, 8, 460–461.
|
| [37] |
Zhu, W.; Zhao, L.; Li, T.; Xu, H.; Ding, Y.X.; Cui, G.Q. Docosahexaenoic acid ameliorates traumatic brain injury involving JNK-mediated Tau phosphorylation signaling. Neurosci. Res. 2020, 157, 44–50.
|
| [38] |
Zhang, H.; Zhang, L.; Zhou, D.M.; Li, H.F.; Xu, Y. ErbB4 mediates amyloid β-induced neurotoxicity through JNK/tau pathway activation: Implications for Alzheimer’s disease. J. Comp. Neurol. 2021, 529, 3497–3512.
|
| [39] |
Orejana, L.; Barros-Miñones, L.; Aguirre, N.; Puerta, E. Implication of JNK pathway on tau pathology and cognitive decline in a senescence-accelerated mouse model. Exp. Gerontol. 2013, 48, 565–571.
|
| [40] |
Sun, X.Y.; Dong, Q.X.; Zhu, J.; Sun, X.; Zhang, L.F.; Qiu, M.; Yu, X.L.; Liu, R.T. Resveratrol rescues tau-induced cognitive deficits and neuropathology in a mouse model of tauopathy. Curr. Alzheimer Res. 2019, 16, 710–722.
|
| [41] |
Wu, T.T.; Chai, L.M.; Yang,Y.X. Action mechanism of Bushen Yifei Xiaozheng Recipe on regulation of endoplasmic reticulum stress by intervening expression of key molecules of JNK apoptosis signaling pathway in pulmonary fibrosis rats. J. Mod. Integr. Med. 2016, 25, 2053–2056.
|
| [42] |
Wu, Y.; Yuan, Y.; Wu, C.B.; Jiang, T.; Wang, B.N.; Xiong, J.; Zheng, P.P.; Li, Y.Y.; Xu, J.Y.; Xu, K.; Liu, Y.Q.; Li, X.K.; Xiao, J. Corrigendum: the reciprocal causation of the ASK1-JNK1/2 pathway and endoplasmic reticulum stress in diabetes-induced cognitive decline. Front. Cell Dev. Biol. 2021, 9, 639486.
|
| [43] |
Luchsinger, J.A. Type 2 diabetes, related conditions, in relation and dementia: an opportunity for prevention? J. Alzheimers Dis. 2010, 20, 723–736.
|
| [44] |
Ryan, C.M.; Freed, M.I.; Rood, J.A.; Cobitz, A.R.; Waterhouse, B.R.; Strachan, M.W. Improving metabolic control leads to better working memory in adults with type 2 diabetes. Diabetes Care. 2006, 29, 345–351.
|
| [45] |
Lin, B.; Zhang, Z.L.; Yu, L.Y.; Guo, L.H. CMV-hFasL transgenic mice are sensitive to low doses of streptozotocin-induced type I diabetes mellitus. Acta Pharmacol. Sin. 2004, 24, 1199–1204
|
| [46] |
Ajebli, M.; Khan, H.; Eddouks, M. Natural alkaloids and diabetes mellitus: a review. Endocr. Metab. Immune. Disord Drug Targets. 2021, 21, 111–130.
|
| [47] |
Feng, J.J.; Zheng, J.G.; Liu, J.L. Pathogenesis of mild cognitive impairment on Chinese medicine and Western medicine: review. J. Changchun Univ. Tradit. Chin. Med. 2014, 30, 1166–1169.
|
| [48] |
Huang, K.; Huang, R.; Zuo, X.T.; Ruan, Z.Z. Overview of the treatment of obesity type 2 diabetes with external treatment of traditional Chinese medicine. Tradit. Chin. Med. 2021, 10, 188–192.
|
| [49] |
Meng, J.N.; Zhu, Y.F.; Ma, H.X.; Wang, X.B.; Zhao, Q.P. The role of traditional Chinese medicine in the treatment of cognitive dysfunction in type 2 diabetes. J. Ethnopharmacol. 2021, 280, 114464.
|
| [50] |
Lin, J.T.; Liu, J.H.; Liu, X.H. Effect of compound Danshen Dropping Pills on cognitive function in diabetic patients with coronary heart disease. China J. New Drugs. 2009, 13, 43–46.
|
| [51] |
Yuan, M.X.; He, Q.; Long, Z.Y.; Zhu, X.F.; Xiang, W.; Wu, Y.H.; Lin, S.B. Exploring the pharmacological mechanism of Liuwei Dihuang decoction for diabetic retinopathy: a systematic biological strategy-based research. Evid. Based Complement. Altern. Med. 2021, 2021, 5544518.
|
| [52] |
Liu, J.P.; Feng, L.; Zhang, M.H.; Ma, D.Y.; Wang, S.Y.; Gu, J.; Fu, Q.; Qu, R.; Ma, S.P. Neuroprotective effect of Liuwei Dihuang decoction on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat. J. Ethnopharmacol. 2013, 150, 371–381.
|
| [53] |
Wu, J.Z.; Ardah, M.; Haikal, C.; Svanbergsson, A.; Diepenbroek, M.; Vaikath, N.N.; Li, W.; Wang, Z.Y.; Outeiro, T.F.; El-Agnaf, O.M.; Li, J.Y. Dihydromyricetin and Salvianolic acid B inhibit alpha-synuclein aggregation and enhance chaperone-mediated autophagy. Transl. Neurodegener. 2019, 8, 18.
|
| [54] |
Ren, Z.X.; Zhao, Y.F.; Cao, T.; Zhen, X.C. Dihydromyricetin protects neurons in an MPTP-induced model of Parkinson’s disease by suppressing glycogen synthase kinase-3 beta activity. Acta Pharmacol. Sin. 2016, 37, 1315–1324.
|
| [1] | Ying Wang, Huan Yu, Tingting Yan, Wenfei Pan. Efficacy and safety of empagliflozin in patients with type 2 diabetes mellitus and concurrent heart failure [J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(11): 1024-1032. |
| [2] | Lu Feng, Wei Huang, Ji Zheng, Dongmei Li, Mingyang Wang, Junya Liu, Shujie Fan, Chao Ji, Nan Yang, Yanyong Liu. Wuling powder alleviates depressive-like behavior by attenuating endoplasmic reticulum stress in the mouse hippocampus [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(9): 783-794. |
| [3] | Yaping Peng, Ying Fu. Advancements in glucagon-like peptide-1 receptor agonist therapy for type 2 diabetes [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(8): 667-685. |
| [4] | Xiaoming Zhang, Shihui Zhu, Yiwen Gao, Jianxiang Li, Nan Zhang, Guihua Yue. Effect of Huanglian Jiedu Decoction on cardiac endoplasmic reticulum stress in spontaneously hypertensive rats [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(7): 609-619. |
| [5] | Huijie Lv, Tuo Xv, Jun Peng, Gang Luo, Jianqin He, Sisi Yang, Tiancheng Zhang, Shuidong Feng, Hongyan Ling. Dihydromyricetin improves liver fat deposition in high-fat diet-induced obese mice [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 824-839. |
| [6] | Rui Li, Yanru Kong. Effects of linagliptin on inflammatory factors and arteriosclerosis in patients with newly diagnosed type 2 diabetes mellitus [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(8): 692-698. |
| [7] | Ye Yao, Xiangfei Jiu, Siyuan Wang, Wei Lu, Tianyan Zhou. Mechanism-based pharmacokinetic/pharmacodynamic modeling of the effects of sitagliptin on DPP-4 activity, insulin and glucose in diabetic rats [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(6): 371-382. |
| [8] | Qin Hu, Hulin Tang, Hong Shao. Incretin-based therapies for type 2 diabetes with nonalcoholic fatty liver disease: a systematic review and meta-analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(3): 206-214. |
| [9] | Li Yao, Fangfang Fan, Lan Hu, Shengjun Zhao, Lili Zheng. Efficacy and safety of saxagliptin in patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(2): 128-139. |
| [10] | Xiaohui Xie, Fei Wang, Jiayu Cui. The impact of obesity in managing diabetes [J]. Journal of Chinese Pharmaceutical Sciences, 2015, 24(6): 412-418. |
| [11] | Xiaohui Bai, Youhong Niu, Decai Xiong, Yanfen Wu, Yunsen Li. Advances of N-terminal modifications of GLP-1 and their applications for the treatment of type 2 diabetes [J]. Journal of Chinese Pharmaceutical Sciences, 2015, 24(11): 701-711. |
| [12] | Khuram Shehzad, Maria Rasool, Mahjabeen Saleem*, Mamoona Naz . Polymorphisms in ghrelin and heparan sulfate proteoglycan genes and their association with diabetic nephropathy in Pakistani population [J]. , 2012, 21(3): 259-264. |
| [13] | ZHANG Yan-song, ZHANG Qing-ying, WANG Bin, LI Li-ying, ZHAO Yu-ying*. Chemical Constituents from Ampelopsis grossedentata [J]. , 2006, 15(4): 211-214. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||