Journal of Chinese Pharmaceutical Sciences ›› 2024, Vol. 33 ›› Issue (3): 201-215.DOI: 10.5246/jcps.2024.03.016
• Original articles • Previous Articles Next Articles
Du Chen1,2,3,#, Maomao Yu2,3,#, Qingyi Zhang2,3, Rui Hu1,2,3,4, Xiqiao Zhou2,3, Bei Tai2,3, Youqun Lu2,3, Rong Qi2,3,1,*()
Received:
2023-12-13
Revised:
2024-01-16
Accepted:
2024-02-24
Online:
2024-03-31
Published:
2024-03-31
Contact:
Rong Qi
About author:
# Du Chen and Maomao Yu contributed equally to this work.
Supported by:
Supporting:
Du Chen, Maomao Yu, Qingyi Zhang, Rui Hu, Xiqiao Zhou, Bei Tai, Youqun Lu, Rong Qi. Enhanced protective effects of naringenin on elastase-induced mouse abdominal aortic aneurysm through nanoliposome delivery[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(3): 201-215.
[1] |
Davis, F.M.; Rateri, D.L.; Daugherty, A. Mechanisms of aortic aneurysm formation: translating preclinical studies into clinical therapies. Heart. 2014, 100, 1498–1505.
|
[2] |
Eckstein, H.H.; Böckler, D.; Flessenkämper, I.; Schmitz-Rixen, T.; Debus, S.; Lang, W. Ultrasonographic screening for the detection of abdominal aortic aneurysms. Dtsch Arztebl. Int. 2009, 106, 657–663.
|
[3] |
Ahmed, R.; Ghoorah, K.; Kunadian, V. Abdominal aortic aneurysms and risk factors for adverse events. Cardiol. Rev. 2016, 24, 88–93.
|
[4] |
Adam, D.J.; Mohan, I.V.; Stuart, W.P.; Bain, M.; Bradbury, A.W. Community and hospital outcome from ruptured abdominal aortic aneurysm within the catchment area of a regional vascular surgical service. J. Vasc. Surg. 1999, 30, 922–928.
|
[5] |
Kitagawa, A.; Mastracci, T.M.; von Allmen, R.; Powell, J.T. The role of diameter versus volume as the best prognostic measurement of abdominal aortic aneurysms. J. Vasc. Surg. 2013, 58, 258–265.
|
[6] |
Rughani, G.; Robertson, L.; Clarke, M. Medical treatment for small abdominal aortic aneurysms. Cochrane Database Syst. Rev. 2012, CD009536.
|
[7] |
Baxter, B.T.; Terrin, M.C.; Dalman, R.L. Medical management of small abdominal aortic aneurysms. Circulation. 2008, 117, 1883–1889.
|
[8] |
Santilli, S.M.; Littooy, F.N.; Cambria, R.A.; Rapp, J.H.; Tretinyak, A.S.; d’Audiffret, A.C.; Kuskowski, M.A.; Roethle, S.T.; Tomczak, C.M.; Krupski, W.C. Expansion rates and outcomes for the 3.0-cm to the 3.9-cm infrarenal abdominal aortic aneurysm. J. Vasc. Surg. 2002, 35, 666–671.
|
[9] |
Vega de Céniga, M.; Gómez, R.; Estallo, L.; Rodríguez, L.; Baquer, M.; Barba, A. Growth rate and associated factors in small abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 2006, 31, 231–236.
|
[10] |
Brown, L.C.; Thompson, S.G.; Greenhalgh, R.M.; Powell, J.T.; Small Aneurysm Trial Participants, U.K. Fit patients with small abdominal aortic aneurysms (AAAs) do not benefit from early intervention. J. Vasc. Surg. 2008, 48, 1375–1381.
|
[11] |
Raffort, J.; Lareyre, F.; Clément, M.; Hassen-Khodja, R.; Chinetti, G.; Mallat, Z. Monocytes and macrophages in abdominal aortic aneurysm. Nat. Rev. Cardiol. 2017, 14, 457–471.
|
[12] |
Cheng, Z.; Zhou, Y.Z.; Wu, Y.; Wu, Q.Y.; Liao, X.B.; Fu, X.M.; Zhou, X.M. Diverse roles of macrophage polarization in aortic aneurysm: destruction and repair. J. Transl. Med. 2018, 16, 354.
|
[13] |
Bi, Y.; Zhong, H.; Xu, K.; Ni, Y.; Qi, X.; Zhang, Z.; Li, W. Performance of a modified rabbit model of abdominal aortic aneurysm induced by topical application of porcine elastase: 5-month follow-up study. Eur. J. Vasc. Endovasc. Surg. 2013, 45, 145–152.
|
[14] |
Bhamidipati, C.M.; Mehta, G.S.; Lu, G.Y.; Moehle, C.W.; Barbery, C.; DiMusto, P.D.; Laser, A.; Kron, I.L.; Upchurch, G.R. Jr, Ailawadi, G. Development of a novel murine model of aortic aneurysms using peri-adventitial elastase. Surgery. 2012, 152, 238–246.
|
[15] |
Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. 2007, 2007, 45673.
|
[16] |
Ali Esmaeili, M.; Alilou, M. Naringenin attenuates CCl4-induced hepatic inflammation by the activation of an Nrf2-mediated pathway in rats. Clin. Exp. Pharmacol. Physiol. 2014, 41, 416–422.
|
[17] |
Mulvihill, E.E.; Assini, J.M.; Sutherland, B.G.; DiMattia, A.S.; Khami, M.; Koppes, J.B.; Sawyez, C.G.; Whitman, S.C.; Huff, M.W. Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 742–748.
|
[18] |
Kapoor, S. Tumor growth attenuating effects of naringenin. Pathol. Oncol. Res. 2014, 20, 483.
|
[19] |
Jeon, S.M.; Kim, H.K.; Kim, H.J.; Do, G.M.; Jeong, T.S.; Park, Y.B.; Choi, M.S. Hypocholesterolemic and antioxidative effects of naringenin and its two metabolites in high-cholesterol fed rats. Transl. Res. 2007, 149, 15–21.
|
[20] |
Assini, J.M.; Mulvihill, E.E.; Sutherland, B.G.; Telford, D.E.; Sawyez, C.G.; Felder, S.L.; Chhoker, S.; Edwards, J.Y.; Gros, R.; Huff, M.W. Naringenin prevents cholesterol-induced systemic inflammation, metabolic dysregulation, and atherosclerosis in Ldlr(-)/(-) mice. J. Lipid Res. 2013, 54, 711–724.
|
[21] |
Zhang, X.; Wang, A.Y.; Yang, X.T.; Wang, Y.X.; Wang, Q.Y.; Hu, R.; Anwaier, G.; Di, C.; Qi, R.; Huang, Y.B. HPMC improves protective effects of naringenin and isonicotinamide co-crystals against abdominal aortic aneurysm. Cardiovasc. Drugs Ther. 2022, 36, 1109–1119.
|
[22] |
Wang, Q.Y.; Ou, Y.J.; Hu, G.M.; Wen, C.; Yue, S.S.; Chen, C.; Xu, L.; Xie, J.W.; Dai, H.; Xiao, H.; Zhang, Y.Y.; Qi, R. Naringenin attenuates non-alcoholic fatty liver disease by down-regulating the NLRP3/NF-κB pathway in mice. Br. J. Pharmacol. 2019, 177, 1806–1821.
|
[23] |
Jia, Y.T.; Zhang, L.; Liu, Z.Y.; Mao, C.F.; Ma, Z.H.; Li, W.Q.; Yu, F.; Wang, Y.B.; Huang, Y.Q.; Zhang, W.Z.; Zheng, J.G.; Wang, X.; Xu, Q.B.; Zhang, J.; Feng, W.; Yun, C.H.; Liu, C.J.; Sun, J.P.; Fu, Y.; Cui, Q.H.; Kong, W. Targeting macrophage TFEB-14-3-3 epsilon Interface by naringenin inhibits abdominal aortic aneurysm. Cell Discov. 2022, 8, 21.
|
[24] |
Khan, A.W.; Kotta, S.; Ansari, S.H.; Sharma, R.K.; Ali, J. Enhanced dissolution and bioavailability of grapefruit flavonoid Naringenin by solid dispersion utilizing fourth generation carrier. Drug Dev. Ind. Pharm. 2015, 41, 772–779.
|
[25] |
Kerdudo, A.; Dingas, A.; Fernandez, X.; Faure, C. Encapsulation of rutin and naringenin in multilamellar vesicles for optimum antioxidant activity. Food Chem. 2014, 159, 12–19.
|
[26] |
Xu, X.R.; Yu, H.T.; Hang, L.; Shao, Y.; Ding, S.H.; Yang, X.W. Preparation of naringenin/β-cyclodextrin complex and its more potent alleviative effect on choroidal neovascularization in rats. Biomed Res. Int. 2014, 2014, 623509.
|
[27] |
Hermenean, A.; Ardelean, A.; Stan, M.; Hadaruga, N.; Mihali, C.V.; Costache, M.; Dinischiotu, A. Antioxidant and hepatoprotective effects of naringenin and its β-cyclodextrin formulation in mice intoxicated with carbon tetrachloride: a comparative study. J. Med. Food. 2014, 17, 670–677.
|
[28] |
Maiti, K.; Mukherjee, K.; Gantait, A.; Saha, B.P.; Mukherjee, P.K. Enhanced therapeutic potential of naringenin-phospholipid complex in rats. J. Pharm. Pharmacol. 2006, 58, 1227–1233.
|
[29] |
Khan, A.W.; Kotta, S.; Ansari, S.H.; Sharma, R.K.; Ali, J. Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: design, characterization, in vitro and in vivo evaluation. Drug Deliv. 2015, 22, 552–561.
|
[30] |
Krishnakumar, N.; Sulfikkarali, N.K.; Manoharan, S.; Nirmal, R.M. Screening of chemopreventive effect of naringenin-loaded nanoparticles in DMBA-induced hamster buccal pouch carcinogenesis by FT-IR spectroscopy. Mol. Cell Biochem. 2013, 382, 27–36.
|
[31] |
Jeong, H.E.; Choi, J.; Oh, I.S.; Son, H.; Jang, S.H.; Jung, S.Y.; Shin, J.Y. Temporal trends of pharmacologic treatments for tuberculosis and multidrug resistant tuberculosis following dissemination of treatment guidelines in South Korea. J. Microbiol. Immunol. Infect. 2022, 55, 917–925.
|
[32] |
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160.
|
[33] |
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48.
|
[34] |
Li, M.Y.; Du, C.Y.; Guo, N.; Teng, Y.O.; Meng, X.; Sun, H.; Li, S.S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem. 2019, 164, 640–653.
|
[35] |
Antimisiaris, S.G.; Marazioti, A.; Kannavou, M.; Natsaridis, E.; Gkartziou, F.; Kogkos, G.; Mourtas, S. Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev. 2021, 174, 53–86.
|
[36] |
Chen, C.; Jie, X.; Ou, Y.J.; Cao, Y.N.; Xu, L.; Wang, Y.X.; Qi, R. Nanoliposome improves inhibitory effects of naringenin on nonalcoholic fatty liver disease in mice. Nanomedicine. 2017, 12, 1791–1800.
|
[37] |
Xie, C.P.; Ye, F.M.; Zhang, N.; Huang, Y.X.; Pan, Y.; Xie, X.J. CCL7 contributes to angiotensin II-induced abdominal aortic aneurysm by promoting macrophage infiltration and pro-inflammatory phenotype. J. Cell Mol. Med. 2021, 25, 7280–7293.
|
[38] |
Ma, K.Y.; Liu, W.Q.; Liu, Q.; Hu, P.F.; Bai, L.Y.; Yu, M.; Yang, Y. Naringenin facilitates M2 macrophage polarization after myocardial ischemia-reperfusion by promoting nuclear translocation of transcription factor EB and inhibiting the NLRP3 inflammasome pathway. Environ. Toxicol. 2023, 38, 1405–1419.
|
[39] |
Chen, Z.; Wu, H.; Fan, W.Y.; Zhang, J.S.; Yao, Y.; Su, W.W.; Wang, Y.G.; Li, P.B. Naringenin suppresses BEAS-2B-derived extracellular vesicular cargoes disorder caused by cigarette smoke extract thereby inhibiting M1 macrophage polarization. Front. Immunol. 2022, 13, 930476.
|
[40] |
Toita, R.; Fujita, S.; Kang, J.H. Macrophage uptake behavior and anti-inflammatory response of bovine brain- or soybean-derived phosphatidylserine liposomes. J. Oleo Sci. 2018, 67, 1131–1135.
|
[1] | Yuxia Zhu, Lingjian Zhang, Yiming Hu, Weihua Liu, Liping Guan, Lin Lin. Study on synthesis of naringenin derivatives and cholinesterase inhibitory activity in marine Chinese medicine [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 636-644. |
[2] | Fan Wang, Ruili Li, Wenjun Wang, Xiaoyan Zhou, Meiyou Liu, Jinyi Zhao, Aidong Wen, Jingwen Wang, Yanyan Jia. α-Boswellic acid ameliorates acute kidney injury by inhibiting the TLR4-mediated inflammatory pathway [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 539-550. |
[3] | Zhaojing Wang, Qingxia Xu, Jing Xu, Wei Xu, Xiuwei Yang. Anti-oxidative and anti-neuroinflammatory effects of corylin in H2O2-induced HT22 cells and LPS-induced BV2 cells by activating Nrf2/HO-1 and inhibiting NF-κB pathways [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(2): 85-100. |
[4] | Kai Li, Bingjie Tang, Xinlong Chai, Yang Ping, Lihong Wang, Jin Su. Sialic acid-functionalized targeted drug delivery systems: advances in tumor and inflammation therapy by binding to Siglecs or selectin receptors [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 773-795. |
[5] | Chanjuan Zhang, Likun Hu, He Zhang, Xinyi Qi, Jian Huang, Dong Liu. 2-Hydroxycircumdatin C inhibits LPS-induced BV2 cells inflammatory response via down-regulation of TLR4-mediated NF-κB/MAPK and JAK2/STAT3 pathways [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(4): 239-249. |
[6] | Ziyi Wang, Xiaoyan Liu, Yuanjun Zhu, Ye Liu, Pingping Zhang, Yinye Wang. The protective effect of W026B on global cerebral ischemia/reperfusion injury model in rats [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(2): 108-116. |
[7] | Huijie Lv, Tuo Xv, Jun Peng, Gang Luo, Jianqin He, Sisi Yang, Tiancheng Zhang, Shuidong Feng, Hongyan Ling. Dihydromyricetin improves liver fat deposition in high-fat diet-induced obese mice [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 824-839. |
[8] | Aihong Zhao, Tianxia Wang, Xiaoyan Liu, Weihong Zhao, Jianping Ma, Xiuwei Yang, Tao Guo, Youbo Zhang. Isolation of endophytic fungi with anti-inflammatory effect in vitro from Zanthoxylum armatum [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(7): 570-577. |
[9] | Jiaqian Chen, Chen Jin, Bolun Xu, Huang Zhan, Rongrong Fu, Fengqin Li, Huilian Huang. Identification of major compounds of total flavonoids from Smilax china and evaluation of anti-inflammatory effect on phenol mucilage-induced pelvic inflammation in rats [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(2): 157-168. |
[10] | Qian Hong, Zenghui Wang, Yang Yang, Lu Gao, Zhao Yan. DGMI alleviates OGD/R-induced cell injury by regulating inflammatory and apoptosis signaling pathways [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(7): 455-469. |
[11] | Xiao Cheng, Yinglin Yang, Weihan Li, Man Liu, Shanshan Zhang, Yuehua Wang, Guanhua Du. Esculin alleviates acute kidney injury and inflammation induced by LPS in mice and its possible mechanism [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(5): 322-332. |
[12] | Jin Huang, Lingxin Yang, Ning Yang, Bowen Yuan, Hao Zhang, Mengyue Wang. The inhibitory activities of Urtica fissa to BPH [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(4): 236-243. |
[13] | Shi Wang, Lu Liu, Youbo Zhang, Wei Xu, Xiuwei Yang. Intestinal anti-inflammatory effects of main components of the fruits of Euodia rutaecarpa in a co-culture model of the human colorectal adenocarcinoma cells and RAW264.7 macrophages [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(12): 868-879. |
[14] | Kexiang Gao, Xiaoyan Liu, Yuanjun Zhu, Ye Liu, Yinye Wang. The influence of B55γ on the neuroprotective effect of W026B in t-MCAO mice [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(10): 711-718. |
[15] | Bolin Wu, Yameng Hao, Ying Chen, Qian Liu, Chao Tian, Zhili Zhang, Junyi Liu, Xiaowei Wang. Studies on the structure-activity relationship of caffeate derivatives as neuroprotective agents [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(9): 615-626. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||