Journal of Chinese Pharmaceutical Sciences ›› 2023, Vol. 32 ›› Issue (11): 867-880.DOI: 10.5246/jcps.2023.11.070
• Original articles • Previous Articles Next Articles
Peijie Chen1,2,*(), Yuntian Zhang3,4
Received:
2023-03-24
Revised:
2023-05-12
Accepted:
2023-06-08
Online:
2023-12-02
Published:
2023-12-02
Contact:
Peijie Chen
Supporting:
Peijie Chen, Yuntian Zhang. PTP1B restrains the apoptosis of activated hepatic stellate cells (HSCs) induced by TRAIL during the resolution of liver fibrosis[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 867-880.
[1] |
Wang, F.D.; Zhou, J.; Chen, E.Q. Molecular mechanisms and potential new therapeutic drugs for liver fibrosis. Front. Pharmacol. 2022, 13, 787748.
|
[2] |
Acharya, P.; Chouhan, K.; Weiskirchen, S.; Weiskirchen, R. Cellular mechanisms of liver fibrosis. Front. Pharmacol. 2021, 12, 671640.
|
[3] |
D’Amico, G.; Morabito, A.; D’Amico, M.; Pasta, L.; Malizia, G.; Rebora, P.; Valsecchi, M.G. Clinical states of cirrhosis and competing risks. J. Hepatol. 2018, 68, 563–576.
|
[4] |
Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151–171.
|
[5] |
Marcellin, P.; Kutala, B.K. Liver diseases: a major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int. 2018, 38, 2–6.
|
[6] |
Kamm, D.R.; McCommis, K.S. Hepatic stellate cells in physiology and pathology. J. Physiol. 2022, 600, 1825–1837.
|
[7] |
Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 397–411.
|
[8] |
Higashi, T.; Friedman, S.L.; Hoshida, Y. Hepatic stellate cells as key target in liver fibrosis. Adv. Drug Deliv. Rev. 2017, 121, 27–42.
|
[9] |
Nan, Y.; Su, H.C.; Lian, X.M.; Wu, J.A.; Liu, S.J.; Chen, P.P.; Liu, S.M. Pathogenesis of liver fibrosis and its TCM therapeutic perspectives. Evid. Based Complement. Alternat. Med. 2022, 2022, 1–12.
|
[10] |
Issa, R.; Williams, E.; Trim, N.; Kendall, T.; Arthur, M.J.; Reichen, J.; Benyon, R.C.; Iredale, J.P. Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut. 2001, 48, 548–557.
|
[11] |
Dixon, J.B.; Bhathal, P.S.; Hughes, N.R.; O'Brien, P.E. Nonalcoholic fatty liver disease: improvement in liver histological analysis with weight loss. Hepatology. 2004, 39, 1647–1654.
|
[12] |
Hammel, P.; Couvelard, A.; O'Toole, D.; Ratouis, A.; Sauvanet, A.; Fléjou, J.F.; Degott, C.; Belghiti, J.; Bernades, P.; Valla, D.; Ruszniewski, P.; Lévy, P. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N. Engl. J. Med. 2001, 344, 418–423.
|
[13] |
Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 151–166.
|
[14] |
Caligiuri, A.; Gentilini, A.; Pastore, M.; Gitto, S.; Marra, F. Cellular and molecular mechanisms underlying liver fibrosis regression. Cells. 2021, 10, 2759.
|
[15] |
Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells. 2020, 9, 875.
|
[16] |
Campana, L.; Iredale, J.P. Regression of liver fibrosis. Semin. Liver Dis. 2017, 37, 1–10.
|
[17] |
Troeger, J.S.; Mederacke, I.; Gwak, G.Y.; Dapito, D.H.; Mu, X.R.; Hsu, C.C.; Pradere, J.P.; Friedman, R.A.; Schwabe, R.F. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology. 2012, 143, 1073–1083.e22.
|
[18] |
Kisseleva, T.; Cong, M.; Paik, Y.; Scholten, D.; Jiang, C.Y.; Benner, C.; Iwaisako, K.; Moore-Morris, T.; Scott, B.; Tsukamoto, H.; Evans, S.M.; Dillmann, W.; Glass, C.K.; Brenner, D.A. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl. Acad. Sci. USA. 2012, 109, 9448–9453.
|
[19] |
Iredale, J.P.; Benyon, R.C.; Pickering, J.; McCullen, M.; Northrop, M.; Pawley, S.; Hovell, C.; Arthur, M.J. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J. Clin. Invest. 1998, 102, 538–549.
|
[20] |
Elsharkawy, A.M.; Oakley, F.; Mann, D.A. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis. 2005, 10, 927–939.
|
[21] |
Xu, F.Y.; Zhou, D.D.; Meng, X.M.; Wang, X.; Liu, C.W.; Huang, C.; Li, J.; Zhang, L. Smad2 increases the apoptosis of activated human hepatic stellate cells induced by TRAIL. Int. Immunopharmacol. 2016, 32, 76–86.
|
[22] |
Tang, X.M.; Yang, J.T.; Li, J. Accelerative effect of leflunomide on recovery from hepatic fibrosis involves TRAIL-mediated hepatic stellate cell apoptosis. Life Sci. 2009, 84, 552–557.
|
[23] |
Taimr, P.; Higuchi, H.; Kocova, E.; Rippe, R.A.; Friedman, S.; Gores, G.J. Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis. Hepatology. 2003, 37, 87–95.
|
[24] |
Yang, J.F.; Liu, Q.X.; Cao, S.Y.; Xu, T.; Li, X.F.; Zhou, D.D.; Pan, L.X.; Li, C.Y.; Huang, C.; Meng, X.M.; Zhang, L.; Wang, X. microRNA-145 increases the apoptosis of activated hepatic stellate cells induced by TRAIL through NF-κB signaling pathway. Front. Pharmacol. 2018, 8, 980.
|
[25] |
Li, R.; Li, Z.; Feng, Y.R.; Yang, H.; Shi, Q.X.; Tao, Z.; Cheng, J.Q.; Lu, X.F. PDGFRβ-targeted TRAIL specifically induces apoptosis of activated hepatic stellate cells and ameliorates liver fibrosis. Apoptosis. 2020, 25, 105–119.
|
[26] |
Singh, H.D.; Otano, I.; Rombouts, K.; Singh, K.P.; Peppa, D.; Gill, U.S.; Böttcher, K.; Kennedy, P.T.F.; Oben, J.; Pinzani, M.; Walczak, H.; Fusai, G.; Rosenberg, W.M.C.; Maini, M.K. TRAIL regulatory receptors constrain human hepatic stellate cell apoptosis. Sci. Rep. 2017, 7, 5514.
|
[27] |
Li, Q.H.; Ding, Y.C.; Guo, X.L.; Luo, S.G.; Zhuang, H.R.; Zhou, J.G.; Xu, N.; Yan, Z.Q. Chemically modified liposomes carrying TRAIL target activated hepatic stellate cells and ameliorate hepatic fibrosis in vitro and in vivo. J. Cell Mol. Med. 2019, 23, 1951–1962.
|
[28] |
Tonks, N.K.; Diltz, C.D.; Fischer, E.H. Purification of the major protein-tyrosine-phosphatases of human placenta. J. Biol. Chem. 1988, 263, 6722–6730.
|
[29] |
Brown-Shimer, S.; Johnson, K.A.; Lawrence, J.B.; Johnson, C.; Bruskin, A.; Green, N.R.; Hill, D.E. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B. Proc. Natl. Acad. Sci. USA. 1990, 87, 5148–5152.
|
[30] |
Chen, P.J.; Cai, S.P.; Huang, C.; Meng, X.M.; Li, J. Protein tyrosine phosphatase 1B (PTP1B): a key regulator and therapeutic target in liver diseases. Toxicology. 2015, 337, 10–20.
|
[31] |
Mobasher, M.A.; de Toro-Martín, J.; González-Rodríguez, Á.; Ramos, S.; Letzig, L.G.; James, L.P.; Muntané, J.; Álvarez, C.; Valverde, Á.M. Essential role of protein-tyrosine phosphatase 1B in the modulation of insulin signaling by acetaminophen in hepatocytes. J. Biol. Chem. 2014, 289, 29406–29419.
|
[32] |
Shimizu, S.; Ugi, S.; Maegawa, H.; Egawa, K.; Nishio, Y.; Yoshizaki, T.; Shi, K.; Nagai, Y.; Morino, K.; Nemoto, K.I.; Nakamura, T.; Bryer-Ash, M.; Kashiwagi, A. Protein-tyrosine phosphatase 1B as new activator for hepatic lipogenesis via sterol regulatory element-binding protein-1 gene expression. J. Biol. Chem. 2003, 278, 43095–43101.
|
[33] |
Tai, W.; Chen, Y.L.; Chu, P.; Chen, L.J.; Hung, M.; Shiau, C.; Huang, J.W.; Tsai, M.; Chen, K.F. Protein tyrosine phosphatase 1B dephosphorylates PITX1 and regulates p120RasGAP in hepatocellular carcinoma. Hepatology. 2016, 63, 1528–1543.
|
[34] |
Chen, P.J.; Cai, S.P.; Yang, Y.; Li, W.X.; Huang, C.; Meng, X.M.; Li, J. PTP1B confers liver fibrosis by regulating the activation of hepatic stellate cells. Toxicol. Appl. Pharmacol. 2016, 292, 8–18.
|
[35] |
She, H.Y.; Xiong, S.G.; Hazra, S.; Tsukamoto, H. Adipogenic transcriptional regulation of hepatic stellate cells. J. Biol. Chem. 2005, 280, 4959–4967.
|
[36] |
Oh, Y.; Park, O.; Swierczewska, M.; Hamilton, J.P.; Park, J.S.; Kim, T.H.; Lim, S.M.; Eom, H.; Jo, D.G.; Lee, C.E.; Kechrid, R.; Mastorakos, P.; Zhang, C.; Hahn, S.K.; Jeon, O.C.; Byun, Y.; Kim, K.; Hanes, J.; Lee, K.C.; Pomper, M.G.; Gao, B.; Lee, S. Systemic PEGylated TRAIL treatment ameliorates liver cirrhosis in rats by eliminating activated hepatic stellate cells. Hepatology. 2016, 64, 209–223.
|
[37] |
Olga, V.; LozaMejía Marco, A.; AriasRomero Luis, E.; Ignacio, C. Recent advances in PTP1B signaling in metabolism and cancer. Biosci. Rep. 2021, DOI: 10.1042/ BSR20211994.
|
[38] |
Yang, L.; Sun, Y.Y.; Liu, Y.R.; Yin, N.N.; Bu, F.T.; Yu, H.X.; Du, X.S.; Li, J.; Huang, C. PTP1B promotes macrophage activation by regulating the NF-κB pathway in alcoholic liver injury. Toxicol. Lett. 2020, 319, 11–21.
|
[39] |
García-Ruiz, I.; Blanes Ruiz, N.; Rada, P.; Pardo, V.; Ruiz, L.; Blas-García, A.; Valdecantos, M.P.; Grau Sanz, M.; Solís Herruzo, J.A.; Valverde, Á.M. Protein tyrosine phosphatase 1b deficiency protects against hepatic fibrosis by modulating nadph oxidases. Redox Biol. 2019, 26, 101263.
|
[40] |
Gomez, E.; Vercauteren, M.; Kurtz, B.; Ouvrard-Pascaud, A.; Mulder, P.; Henry, J.P.; Besnier, M.; Waget, A.; Hooft Van Huijsduijnen, R.; Tremblay, M.L.; Burcelin, R.; Thuillez, C.; Richard, V. Reduction of heart failure by pharmacological inhibition or gene deletion of protein tyrosine phosphatase 1B. J. Mol. Cell Cardiol. 2012, 52, 1257–1264.
|
[41] |
Gogiraju, R.; Schroeter, M.R.; Bochenek, M.L.; Hubert, A.; Münzel, T.; Hasenfuss, G.; Schäfer, K. Endothelial deletion of protein tyrosine phosphatase-1B protects against pressure overload-induced heart failure in mice. Cardiovasc. Res. 2016, 111, 204–216.
|
[42] |
Chen, Q.; Gao, C.; Wang, M.; Fei, X.A.; Zhao, N. TRIM18-regulated STAT3 signaling pathway via PTP1B promotes renal epithelial–mesenchymal transition, inflammation, and fibrosis in diabetic kidney disease. Front. Physiol. 2021, 12, 709506.
|
[43] |
Sun, P.Y.; Li, L.; Zhao, C.Q.; Pan, M.Y.; Qian, Z.K.; Su, X. Deficiency of α7 nicotinic acetylcholine receptor attenuates bleomycin-induced lung fibrosis in mice. Mol. Med. 2017, 23, 34–49.
|
[44] |
de Oliveira da Silva, B.; Ramos, L.F.; Moraes, K.C.M. Molecular interplays in hepatic stellate cells: apoptosis, senescence, and phenotype reversion as cellular connections that modulate liver fibrosis. Cell Biol. Int. 2017, 41, 946–959.
|
[45] |
Holoch, P.A.; Griffith, T.S. TNF-related apoptosis-inducing ligand (TRAIL): a new path to anti-cancer therapies. Eur. J. Pharmacol. 2009, 625, 63–72.
|
[46] |
Liu, H.B.; Wu, Y.; Zhu, S.H.; Liang, W.J.; Wang, Z.F.; Wang, Y.F.; Lv, T.F.; Yao, Y.W.; Yuan, D.M.; Song, Y. PTP1B promotes cell proliferation and metastasis through activating src and ERK1/2 in non-small cell lung cancer. Cancer Lett. 2015, 359, 218–225.
|
[47] |
Wang, N.; She, J.J.; Liu, W.; Shi, J.; Yang, Q.; Shi, B.Y.; Hou, P. Frequent amplification of PTP1B is associated with poor survival of gastric cancer patients. Cell Cycle. 2015, 14, 732–743.
|
[1] | Fan Wang, Ruili Li, Wenjun Wang, Xiaoyan Zhou, Meiyou Liu, Jinyi Zhao, Aidong Wen, Jingwen Wang, Yanyan Jia. α-Boswellic acid ameliorates acute kidney injury by inhibiting the TLR4-mediated inflammatory pathway [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 539-550. |
[2] | Limei Yang, Liman Wang, Xuhui Huang, Jie Zhuang. Warfarin affects the proliferation and apoptosis of lung cancer cells by regulating the Gas6/Axl/PI3K/Akt/NF-κB pathway [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(3): 190-199. |
[3] | Wuyinxiao Zheng, Haiping Li, Laichun Luo, Chunling Hu, Pengtao You. PI3K/AKT/mTOR pathway inhibition and miR-210-mediated suppression of Atg7 promote autophagy in TOPC-induced apoptosis of H1975 cells [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 881-892. |
[4] | Ziyi Wang, Xiaoyan Liu, Yuanjun Zhu, Ye Liu, Pingping Zhang, Yinye Wang. The protective effect of W026B on global cerebral ischemia/reperfusion injury model in rats [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(2): 108-116. |
[5] | Mingkang Zhang, Yuyue Chen, Yan Zhou, Xin'an Wu. The alleviating effect of quercetin on carbon tetrachloride-induced liver fibrosis in rats and its underlying mechanism [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 840-852. |
[6] | Chunyang Han, Taotao Sun, Guangtai Fan, Yawei Liu, Cuiyan Liu. Protective effects of Polygonatum sibiricum against CCl4-induced acute liver injury in rats through oxidative stress and mitochondrial apoptotic pathways [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(4): 306-318. |
[7] | Kexiang Gao, Xiaoyan Liu, Yuanjun Zhu, Ye Liu, Yinye Wang. The influence of B55γ on the neuroprotective effect of W026B in t-MCAO mice [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(10): 711-718. |
[8] | Jianwei Gao, Feng Ye. Curcumin inhibits inflammatory cytokine transcription via the apoptosis pathway in THP-1 cells [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(2): 100-113. |
[9] | Kuai Yu, Ruyi Li, Yuanjun Zhu, Xiaoyan Liu, Yinye Wang. Engineering the protein targeting two pathways of cerebral ischemia reperfusion injury provides better neuroprotective effect than targeting one pathway [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(11): 760-769. |
[10] | Xu Quan, Caihong Gu, Feng Yan, Yaoyao Gao, Lin Chen, Rong Wei, Bingchun Yan, Rong Hu. Porcine placental peptides improve neuroblast proliferation and differentiation via enhancement of TrkB and BDNF levels in D-glatacose-induced mouse aging model [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(10): 739-748. |
[11] | Li Lei, Yu Chen, Simin Yang, Xiangbao Meng, Siwang Yu. A novel aza-naphthoquinone inhibits tumor growth by inducing apoptosis [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(9): 600-607. |
[12] | Yuqing Meng, Lichao Wang, Yan Li, Jinyang Song, Zhiyong Du, Chun Li, Yong Jiang, Pengfei Tu, Xiaoyu Guo. Cardioprotective effects of combination of notoginseng total saponins and safflower total flavonoids against myocardial infarction in rats [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(2): 116-122. |
[13] | Chunling Hu, Xiaozhi Peng, Yinping Tang, Yanwen Liu, Zuliang Hu, Jianrong Gao. Purification, characterization, in vitro anti-hepatic fibrosis activity of bioactive peptides derived from Carapax Trionycis hydrolysates [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(8): 605-610. |
[14] | Shasha Ji, Yun Lei, Xiaotian Huang, Zhiqin Gao. Protective effects of β-dihydroagarofuran-type sesquiterpene against Aβ25-35-induced neuronal apoptosis and oxidative damage [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(8): 582-589. |
[15] | Hongjun Xie, Lei Liu, Fan Zeng, Limin Mu, Yao Zhao, Yan Yan, Yingjie Hu, Jiashuan Wu, Yingzi Bu, Jingying Zhang, Wanliang Lu. Efficacy and mechanism of antiresistant vinorelbine liposomes in treating resistant breast cancer cells [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(7): 489-501. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||