[1] |
Benichou, C. Criteria of drug-induced liver disorders: report of an International Consensus Meeting. J. Hepatol. 1990, 11, 272–276.
|
[2] |
Sayuk, G.S.; Elwing, J.E.; Lisker-Melman, M. Hepatic glycogenosis: an underrecognized source of abnormal liver function tests? Dig. Dis. Sci. 2007, 52, 936–938.
|
[3] |
Rautou, P.E.; Cazals-Hatem, D.; Moreau, R.; Francoz, C.; Feldmann, G.; Lebrec, D.; Ogier-Denis, É.; Bedossa, P.; Valla, D.; Durand, F. Acute liver cell damage in patients with anorexia nervosa: a possible role of starvation-induced hepatocyte autophagy. Gastroenterology. 2008, 135, 840–848.e3.
|
[4] |
Browning, J.D.; Szczepaniak, L.S.; Dobbins, R.; Nuremberg, P.; Horton, J.D.; Cohen, J.C.; Grundy, S.M.; Hobbs, H.H. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004, 40, 1387–1395.
|
[5] |
Chalasani, N.P.; Hayashi, P.H.; Bonkovsky, H.L.; Navarro, V.J.; Lee, W.M.; Fontana, R.J. ACG clinical guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. Am. J. Gastroenterol. 2014, 109, 950–966.
|
[6] |
Czaja, A.J. Drug-induced autoimmune-like hepatitis. Dig. Dis. Sci. 2011, 56, 958–976.
|
[7] |
Luedde, T.; Kaplowitz, N.; Schwabe, R.F. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology. 2014, 147, 765–783.e4.
|
[8] |
Chen, M.J.; Liu, C.; Wan, Y.; Yang, L.; Jiang, S.; Qian, D.W.; Duan, J.N. Enterohepatic circulation of bile acids and their emerging roles on glucolipid metabolism. Steroids. 2021, 165, 108757.
|
[9] |
Li, M.; Cai, S.Y.; Boyer, J.L. Mechanisms of bile acid mediated inflammation in the liver. Mol. Aspects Med. 2017, 56, 45–53.
|
[10] |
Pinto, C.; Giordano, D.M.; Maroni, L.; Marzioni, M. Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2018, 1864, 1270–1278.
|
[11] |
Chang, J.H.; Sangaraju, D.; Liu, N.; Jaochico, A.; Plise, E. Comprehensive evaluation of bile acid homeostasis in human hepatocyte co-culture in the presence of troglitazone, pioglitazone, and acetylsalicylic acid. Mol. Pharm. 2019, 16, 4230–4240.
|
[12] |
Segev, N.; Harel, M.; Mannor, S.; Crammer, K.; El-Yaniv, R. Learn on source, refine on target: a model transfer learning framework with random forests. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1811–1824.
|
[13] |
Salem, G.A.; Shaban, A.; Diab, H.A.; Elsaghayer, W.A.; Mjedib, M.D.; Hnesh, A.M.; Sahu, R.P. Phoenix dactylifera protects against oxidative stress and hepatic injury induced by paracetamol intoxication in rats. Biomed. Pharmacother. 2018, 104, 366–374.
|
[14] |
Gellin, B.; Modlin, J.F.; Breiman, R.F. Vaccines as tools for advancing more than public health: perspectives of a former director of the national vaccine program office. Clin. Infect Dis. 2001, 32, 283–288.
|
[15] |
Hussein, M.A. Prophylactic effect of resveratrol against ethinylestradiol-induced liver cholestasis. J. Med. Food. 2013, 16, 246–254.
|
[16] |
Wang, P.C.; Pradhan, K.; Zhong, X.B.; Ma, X.C. Isoniazid metabolism and hepatotoxicity. Acta Pharm. Sin. B. 2016, 6, 384–392.
|
[17] |
Yamazaki, M.; Miyake, M.; Sato, H.; Masutomi, N.; Tsutsui, N.; Adam, K.P.; Alexander, D.C.; Lawton, K.A.; Milburn, M.V.; Ryals, J.A.; Wulff, J.E.; Guo, L.N. Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats. Toxicol. Appl. Pharmacol. 2013, 268, 79–89.
|
[18] |
Alkiyumi, S.S.; Abdullah, M.A.; Alrashdi, A.S.; Salama, S.M.; Abdelwahab, S.I.; Hadi, A.H.A. Ipomoea aquatica extract shows protective action against thioacetamide-induced hepatotoxicity. Molecules. 2012, 17, 6146–6155.
|
[19] |
Wagner, M.; Zollner, G.; Trauner, M. New molecular insights into the mechanisms of cholestasis. J. Hepatol. 2009, 51, 565–580.
|
[20] |
Anderson, N.; Borlak, J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol. Rev. 2008, 60, 311–357.
|
[21] |
Jaeschke, H.; McGill, M.R.; Ramachandran, A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab. Rev. 2012, 44, 88–106.
|
[22] |
Younossi, Z.M.; Loomba, R.; Anstee, Q.M.; Rinella, M.E.; Bugianesi, E.; Marchesini, G.; Neuschwander-Tetri, B.A.; Serfaty, L.; Negro, F.; Caldwell, S.H.; Ratziu, V.; Corey, K.E.; Friedman, S.L.; Abdelmalek, M.F.; Harrison, S.A.; Sanyal, A.J.; Lavine, J.E.; Mathurin, P.; Charlton, M.R.; Goodman, Z.D.; Chalasani, N.P.; Kowdley, K.V.; George, J.; Lindor, K. Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. Hepatology. 2018, 68, 349–360.
|
[23] |
Alnouti, Y.; Csanaky, I.L.; Klaassen, C.D. Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC-MS/MS. J. Chromatogr. B. 2008, 873, 209–217.
|
[24] |
Copple, B.; Jaeschke, H.; Klaassen, C. Oxidative stress and the pathogenesis of cholestasis. Semin. Liver Dis. 2010, 30, 195–204.
|
[25] |
Rodrigues, C.M.P.; Solá, S.; Nan, Z.H.; Castro, R.E.; Ribeiro, P.S.; Low, W.C.; Steer, C.J. Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. PNAS. 2003, 100, 6087–6092.
|
[26] |
Hua, Y.N.; Kandadi, M.R.; Zhu, M.J.; Ren, J.; Sreejayan, N. Tauroursodeoxycholic acid attenuates lipid accumulation in endoplasmic reticulum–stressed macrophages. J. Cardiovasc. Pharmacol. 2010, 55, 49–55.
|
[27] |
Woo, S.J.; Kim, J.H.; Yu, H.G. Ursodeoxycholic acid and tauroursodeoxycholic acid suppress choroidal neovascularization in a laser-treated rat model. J. Ocular Pharmacol. Ther. 2010, 26, 223–229.
|
[28] |
Fernandes, A.; Vaz, A.R.; Falcão, A.S.; Silva, R.F.M.; Brito, M.A.; Brites, D. Glycoursodeoxycholic acid and interleukin-10 modulate the reactivity of rat cortical astrocytes to unconjugated bilirubin. J. Neuropathol. Exp. Neurol. 2007, 66, 789–798.
|
[29] |
Brito, M.A.; Lima, S.; Fernandes, A.; Falcão, A.S.; Silva, R.F.M.; Butterfield, D.A.; Brites, D. Bilirubin injury to neurons: contribution of oxidative stress and rescue by glycoursodeoxycholic acid. NeuroToxicology. 2008, 29, 259–269.
|
[30] |
Battson, M.L.; Lee, D.M.; Jarrell, D.K.; Hou, S.F.; Ecton, K.E.; Phan, A.B.; Gentile, C.L. Tauroursodeoxycholic acid reduces arterial stiffness and improves endothelial dysfunction in type 2 diabetic mice. J. Vasc. Res. 2017, 54, 280–287.
|
[31] |
Hofmann, A.F. The continuing importance of bile acids in liver and intestinal disease. Arch. Intern. Med. 1999, 159, 2647.
|
[32] |
Amaral J.D.; Xavier J.M.; Steer C.J.; Rodrigues C.M. The role of p53 in apoptosis. Discov. Med. 2010, 45, 145–152.
|
[33] |
Wang, C.Y.; Li, L.; Guan, H.; Tong, S.; Liu, M.Q.; Liu, C.; Zhang, Z.Y.; Du, C.G.; Li, P.F. Effects of taurocholic acid on immunoregulation in mice. Int. Immunopharmacol. 2013, 15, 217–222.
|
[34] |
Xu, Y.; Zhong, P.P.; Tao, Y.Y. Metabolic profiling of endogenous bile acids: a novel method to assess hepatoprotective effect of Tanreqing capsule on carbon-tetrachloride-induced liver injury in rats. Chin. J. Nat. Med. 2018, 16, 271–283.
|