[1] |
Yang, L.; Wu, J.J.; Wang, J.; Zheng, H. Effect of HIF-1α on mitochondrial function after sevoflurane postconditioning alleviating ischemia-reperfusion injury in rat. Chin. J. Evid. Base. Cardiovasc. Med. 2020, 12, 304–307.
|
[2] |
Tekin, D.; Dursun, A.D.; Xi, L. Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacol. Sin. 2010, 31, 1085–1094.
|
[3] |
Zhang, H.Y.; Geng, W. Correlations of serum miR-34a and HIF-1α levels with coronary collateral circulation in the patients with coronary heart disease. Chongqing Med. 2019, 48, 2139–2141, 2155.
|
[4] |
Jiang, L.; Yang, R.Q.; Cheng, X.S. Advances on the treatment of hypoxia inducible factor-1 in ischemic heart disease. Guangdong Med. 2012, 33, 2509–2511.
|
[5] |
Välimäki, M.J.; Ruskoaho, H.J. Targeting GATA4 for cardiac repair. IUBMB Life. 2020, 72, 68–79.
|
[6] |
Yu, W.; Huang, X.; Tian, X.; Zhang, H.; He, L.; Wang, Y.; Nie, Y.; Hu, S.; Lin, Z.; Zhou, B.; Pu, W.; Lui, K.O.; Zhou, B. GATA4 regulates Fgf16 to promote heart repair after injury. Dev. Camb. Engl. 2016, 143, 936–949.
|
[7] |
He, J.G.; Yan, D.; Wang, P.; Li, H.R. Research progress of role of GATA-4 in cardiac injury repair. Med. Recapitu l. 2015, 21, 4033–4036.
|
[8] |
Wu, C.H.; Lin, H.F.; Lin, W.W.; Liu, Y.W.; You, X.; Lin, C.H.; Lin, R.F.; Zeng, D.Y.; Huang, P.F. A prospective cohort study on the relationship between vancomycin steady-state trough concentration and efficacy and safety in Chinese adults. J. Chin. Pharm. Sci. 2020, 29, 341–354.
|
[9] |
Zhang, M.; Zhang, Y.; Yin, L.X. Guidelines for clinical application of echocardiography in the evaluation of cardiac systolic and diastolic function. Chin. J. Ultrason. 2020, 29, 461–477.
|
[10] |
Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; Lancellotti, P.; Muraru, D.; Picard, M.H.; Rietzschel, E.R.; Rudski, L.; Spencer, K.T.; Tsang, W.; Voigt, J.U. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14.
|
[11] |
Larik, F.A.; Saeed, A.; Shahzad, D.; Faisal, M.; El-Seedi, H.; Mehfooz, H.; Channar, P.A. Synthetic approaches towards the multi target drug spironolactone and its potent analogues/derivatives. Steroids. 2017, 118, 76–92.
|
[12] |
Dong, Q.; Liu, K.S.; Liu, H.B.; Li, S.R.; Han, Y.P.; Zhang, L.P.; Wang, Y.; Liu, G.; Wang, X.P.; Xu, L.F.; Li, X.C. Effect of spironolactone on left ventricular remodeling in patients with acute myocardial infarction. Chin. J. Cardio. 2005, 33, 315–319.
|
[13] |
Upadhya, B.; Hundley, W.G.; Brubaker, P.H.; Morgan, T.M.; Stewart, K.P.; Kitzman, D.W. Effect of spironolactone on exercise tolerance and arterial function in older adults with heart failure with preserved ejection fraction. J. Am. Geriatr. Soc. 2017, 65, 2374–2382.
|
[14] |
Dong, D.; Fan, T.T.; Ji, Y.S.; Yu, J.Y.; Wu, S.; Zhang, L. Spironolactone alleviates diabetic nephropathy through promoting autophagy in podocytes. Int. Urol. Nephrol. 2019, 51, 755–764.
|
[15] |
Safdar, Z.; Frost, A.; Basant, A.; Deswal, A.; O’Brian Smith, E.; Entman, M. Spironolactone in pulmonary arterial hypertension: results of a cross-over study. Pulm. Circ. 2020, 10, 2045.
|
[16] |
Maron, M.S.; Chan, R.H.; Kapur, N.K.; Jaffe, I.Z.; McGraw, A.P.; Kerur, R.; Maron, B.J.; Udelson, J.E. Effect of spironolactone on myocardial fibrosis and other clinical variables in patients with hypertrophic cardiomyopathy. Am. J. Med. 2018, 131, 837–841.
|
[17] |
Papademetriou, V.; Toumpourleka, M.; Imprialos, K.P.; Alataki, S.; Manafis, A.; Stavropoulos, K. The role of mineralocorticoid receptor antagonists in heart failure with reduced ejection fraction. Curr. Pharm. Des. 2018, 24, 5517–5524.
|
[18] |
Jiang, Y.R. Efficacy and safety of spironolactone in mono-therapy versus low does spironolactone in combined-therapy for the treatment of idiopathic hyperaldosteronism. China Med. Abstr. (Intern. Med). 2018, 35, 147.
|
[19] |
Manolis, A.A.; Manolis, T.A.; Melita, H.; Manolis, A.S. Eplerenone versus spironolactone in resistant hypertension: an efficacy and/or cost or just a men’s issue? Curr. Hypertens. Rep. 2019, 21, 1–14.
|
[20] |
Serenelli, M.; Jackson, A.; Dewan, P.; Jhund, P.S.; Petrie, M.C.; Rossignol, P.; Campo, G.; Pitt, B.; Zannad, F.; Ferreira, J.P.; McMurray, J.J.V. Mineralocorticoid receptor antagonists, blood pressure, and outcomes in heart failure with reduced ejection fraction. JACC: Heart Fail. 2020, 8, 188–198.
|
[21] |
Ong, S.G.; Lee, W.H.; Theodorou, L.; Kodo, K.; Lim, S.Y.; Shukla, D.H.; Briston, T.; Kiriakidis, S.; Ashcroft, M.; Davidson, S.M.; Maxwell, P.H.; Yellon, D.M.; Hausenloy, D.J. HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovasc. Res. 2014, 104, 24–36.
|
[22] |
Yang, L.; Ma, N.; Wu, J.J.; Yu, J.; Ye, J.R.; Wang, J.; Zheng, H. Role of HIF-1α/BNIP3 signaling pathway in sevoflurane-induced attenuation of myocardial ischemia-reperfusion injury in rats: relationship with autophagy. Chin. J. Anesthesi. 2020, 40, 99–102.
|
[23] |
de Mignot, A.; Donal, E.; Zaroui, A.; Reant, P.; Salem, A.; Hamon, C.; Monzy, S.; Roudaut, R.; Habib, G.; Lafitte, S. Global longitudinal strain as a major predictor of cardiac events in patients with depressed left ventricular function: a multicenter study. J. Am. Soc. Echocardiogr. 2010, 23, 1019–1024.
|
[24] |
Di Salvo, G.; Rea, A.; Mormile, A.; Limongelli, G.; D’Andrea, A.; Pergola, V.; Pacileo, G.; Caso, P.; Calabrò, R.; Russo, M.G. Usefulness of bidimensional strain imaging for predicting outcome in asymptomatic patients aged ≤ 16 years with isolated moderate to severe aortic regurgitation. Am. J. Cardiol. 2012, 110, 1051–1055.
|
[25] |
Witkowski, T.G.; Thomas, J.D.; Debonnaire, P.J.M.R.; Delgado, V.; Hoke, U.; Ewe, S.H.; Versteegh, M.I.M.; Holman, E.R.; Schalij, M.J.; Bax, J.J.; Klautz, R.J.M.; Marsan, N.A. Global longitudinal strain predicts left ventricular dysfunction after mitral valve repair. Eur. Heart J. Cardiovasc. Imaging. 2013, 14, 69–76.
|
[26] |
Wu, Y.H.; Deng, Y.B.; Shentu, W.H.; Xiong, L.; Zhao, C.Y.; Zhu, Y.; Huang, Y.Q. Two-dimensional strain in patients with coronary artery disease measured by speckle tracking echocardiography. Chin. J. Ultrason. 2008, 17, 745–748.
|
[27] |
Sun, S.; Li, T.; Jin, L.; Piao, Z.H.; Liu, B.; Ryu, Y.; Choi, S.Y.; Kim, G.R.; Jeong, J.E.; Wi, A.J.; Lee, S.J.; Kee, H.J.; Jeong, M.H. Dendropanax morbifera prevents cardiomyocyte hypertrophy by inhibiting the Sp1/GATA4 pathway. Am. J. Chin. Med. 2018, 46, 1021–1044.
|
[28] |
Maliken, B.D.; Kanisicak, O.; Karch, J.; Khalil, H.; Fu, X.; Boyer, J.G.; Prasad, V.; Zheng, Y.; Molkentin, J.D. Gata4-dependent differentiation of c-kit+ –derived endothelial cells underlies artefactual cardiomyocyte regeneration in the heart. Circulation. 2018, 138, 1012–1024.
|