Journal of Chinese Pharmaceutical Sciences ›› 2021, Vol. 30 ›› Issue (11): 859-873.DOI: 10.5246/jcps.2021.11.074
• Original articles • Next Articles
Xueni Cai1, Ge Fu1, Martin Lepšík2, Emanuele Paci3, Yuan Guo4,*(), Zhongjun Li1,*(), Qing Li1,*()
Received:
2021-04-18
Revised:
2021-05-09
Accepted:
2021-08-25
Online:
2021-11-28
Published:
2021-11-28
Contact:
Yuan Guo, Zhongjun Li, Qing Li
Supporting:
Xueni Cai, Ge Fu, Martin Lepšík, Emanuele Paci, Yuan Guo, Zhongjun Li, Qing Li. Synthesis of a series of novel homo- and hetero-glycoclusters and their binding activities to DC-SIGN[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(11): 859-873.
[1] |
Banchereau, J.; Briere, F.; Caux, C.; Davoust, J.; Lebecque, S.; Liu, Y.J.; Pulendran, B.; Palucka, K. Immunobiology of dendritic cells. Annu. Rev. Immunol. 2000, 18, 767–811.
|
[2] |
Kooyk, Y.V.; Engering, A.; Lekkerkerker, A.N.; Ludwig, I.S.; Geijtenbeek, T.B. Pathogens use carbohydrates to escape immunity induced by dendritic cells. Curr. Opin. Immunol. 2004, 16, 488–493.
|
[3] |
Geijtenbeek, T.B.; Torensma, R.; van Vliet, S.J.; van Duijnhoven, G.C.; Adema, G.J.; van Kooyk, Y.; Figdor, C.G. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell. 2000, 100, 575–585.
|
[4] |
Serrano-Gómez, D.; Sierra-Filardi, E.; Martínez-Nuñez, R.T.; Caparrós, E.; Delgado, R.; Muñoz-Fernández, M.A.; Abad, M.A.; Jimenez-Barbero, J.; Leal, M.; Corbí, A.L. Structural requirements for multimerization of the pathogen receptor dendritic Cell-specific ICAM3-grabbing Non-integrin (CD209) on the cell surface. J. Biol. Chem. 2008, 283, 3889–3903.
|
[5] |
Feinberg, H.; Guo, Y.; Mitchell, D.A.; Drickamer, K.; Weis, W.I. Extended neck regions stabilize tetramers of the receptors DC-SIGN and DC-SIGNR. J. Biol. Chem. 2005, 280, 1327–1335.
|
[6] |
Mitchell, D.A.; Fadden, A.J.; Drickamer, K. A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. J. Biol. Chem. 2001, 276, 28939–28945.
|
[7] |
Geijtenbeek, T.B.H.; Kwon, D.S.; Torensma, R.; van Vliet, S.J.; van Duijnhoven, G.C.F.; Middel, J.; Cornelissen, I.L.M.H.A.; Nottet, H.S.L.M.; KewalRamani, V.N.; Littman, D.R.; Figdor, C.G.; van Kooyk, Y. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell. 2000, 100, 587–597.
|
[8] |
Lozach, P.Y.; Lortat-Jacob, H.; de Lacroix de Lavalette, A.; Staropoli, I.; Foung, S.; Amara, A.; Houlès, C.; Fieschi, F.; Schwartz, O.; Virelizier, J.L.; Arenzana-Seisdedos, F.; Altmeyer, R. DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J. Biol. Chem. 2003, 278, 20358–20366.
|
[9] |
Alvarez, C.P.; Lasala, F.; Carrillo, J.; Muñiz, O.; Corbí, A.L.; Delgado, R. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J. Virol. 2002, 76, 6841–6844.
|
[10] |
Geijtenbeek, T.B.; Van Vliet, S.J.; Koppel, E.A.; Sanchez-Hernandez, M.; Vandenbroucke-Grauls, C.M.; Appelmelk, B.; Van Kooyk, Y. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 2003, 197, 7–17.
|
[11] |
Tailleux, L.; Schwartz, O.; Herrmann, J.L.; Pivert, E.; Jackson, M.; Amara, A.; Legres, L.; Dreher, D.; Nicod, L.P.; Gluckman, J.C.; Lagrange, P.H.; Gicquel, B.; Neyrolles, O. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J. Exp. Med. 2003, 197, 121–127.
|
[12] |
Guo, Y.; Feinberg, H.; Conroy, E.; Mitchell, D.A.; Alvarez, R.; Blixt, O.; Taylor, M.E.; Weis, W.I.; Drickamer, K. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat. Struct. Mol. Biol. 2004, 11, 591–598.
|
[13] |
Feinberg, H. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 2001, 294, 2163–2166.
|
[14] |
Feinberg, H.; Castelli, R.; Drickamer, K.; Seeberger, P.H.; Weis, W.I. Multiple modes of binding enhance the affinity of DC-SIGN for high mannose N-linked glycans found on viral glycoproteins. J. Biol. Chem. 2007, 282, 4202–4209.
|
[15] |
Luczkowiak, J.; Sattin, S.; Sutkevičiu̅tė, I.; Reina, J.J.; Sánchez-Navarro, M.; Thépaut, M.; Martínez-Prats, L.; Daghetti, A.; Fieschi, F.; Delgado, R.; Bernardi, A.; Rojo, J. Pseudosaccharide functionalized dendrimers as potent inhibitors of DC-SIGN dependent Ebola pseudotyped viral infection. Bioconjugate Chem. 2011, 22, 1354–1365.
|
[16] |
Arnáiz, B.; Martínez-Ávila, O.; Falcon-Perez, J.M.; Penadés, S. Cellular uptake of gold nanoparticles bearing HIV gp120 oligomannosides. Bioconjugate Chem. 2012, 23, 814–825.
|
[17] |
Dehuyser, L.; Schaeffer, E.; Chaloin, O.; Mueller, C.G.; Baati, R.; Wagner, A. Synthesis of novel mannoside glycolipid conjugates for inhibition of HIV-1 trans-infection. Bioconjugate Chem. 2012, 23, 1731–1739.
|
[18] |
Zhang, Q.; Su, L.; Collins, J.; Chen, G.S.; Wallis, R.; Mitchell, D.A.; Haddleton, D.M.; Becer, C.R. Dendritic cell lectin-targeting sentinel-like unimolecular glycoconjugates to release an anti-HIV drug. J. Am. Chem. Soc. 2014, 136, 4325–4332.
|
[19] |
Arosio, D.; Chiodo, F.; Reina, J.J.; Marelli, M.; Penadés, S.; van Kooyk, Y.; Garcia-Vallejo, J.J.; Bernardi, A. Effective targeting of DC-SIGN by α-fucosylamide functionalized gold nanoparticles. Bioconjugate Chem. 2014, 25, 2244–2251.
|
[20] |
Cecioni, S.; Imberty, A.; Vidal, S. Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands. Chem. Rev. 2015, 115, 525–561.
|
[21] |
Muñoz, A.; Sigwalt, D.; Illescas, B.M.; Luczkowiak, J.; Rodríguez-Pérez, L.; Nierengarten, I.; Holler, M.; Remy, J.S.; Buffet, K.; Vincent, S.P.; Rojo, J.; Delgado, R.; Nierengarten, J.F.; Martín, N. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection. Nat. Chem. 2016, 8, 50–57.
|
[22] |
Ribeiro-Viana, R.; Sánchez-Navarro, M.; Luczkowiak, J.; Koeppe, J.R.; Delgado, R.; Rojo, J.; Davis, B.G. Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nat. Commun. 2012, 3, 1303.
|
[23] |
Guo, Y.; Nehlmeier, I.; Poole, E.; Sakonsinsiri, C.; Hondow, N.; Brown, A.; Li, Q.; Li, S.; Whitworth, J.; Li, Z.J.; Yu, A.C.; Brydson, R.; Turnbull, W.B.; Pöhlmann, S.; Zhou, D.J. Dissecting multivalent lectin–carbohydrate recognition using polyvalent multifunctional glycan-quantum dots. J. Am. Chem. Soc. 2017, 139, 11833–11844.
|
[24] |
Illescas, B.M.; Rojo, J.; Delgado, R.; Martín, N. Multivalent glycosylated nanostructures to inhibit Ebola virus infection. J. Am. Chem. Soc. 2017, 139, 6018–6025.
|
[25] |
Rodríguez-Pérez, L.; Ramos-Soriano, J.; Pérez-Sánchez, A.; Illescas, B.M.; Muñoz, A.; Luczkowiak, J.; Lasala, F.; Rojo, J.; Delgado, R.; Martín, N. Nanocarbon-based glycoconjugates as multivalent inhibitors of Ebola virus infection. J. Am. Chem. Soc. 2018, 140, 9891–9898.
|
[26] |
Ramos-Soriano, J.; Reina, J.J.; Illescas, B.M.; de la Cruz, N.; Rodríguez-Pérez, L.; Lasala, F.; Rojo, J.; Delgado, R.; Martín, N. Synthesis of highly efficient multivalent disaccharide/[60]fullerene nanoballs for emergent viruses. J. Am. Chem. Soc. 2019, 141, 15403–15412.
|
[27] |
Budhadev, D.; Poole, E.; Nehlmeier, I.; Liu, Y.; Hooper, J.; Kalverda, E.; Akshath, U.S.; Hondow, N.; Turnbull, W.B.; Pöhlmann, S.; Guo, Y.; Zhou, D. Glycan-gold nanoparticles as multifunctional probes for multivalent lectin-carbohydrate binding: implications for blocking virus infection and nanoparticle assembly. J. Am. Chem. Soc. 2020, 142, 18022–18034.
|
[28] |
Gómez-García, M.; Benito, J.M.; Rodríguez-Lucena, D.; Yu, J.X.; Chmurski, K.; Ortiz Mellet, C.; Gutiérrez Gallego, R.; Maestre, A.; Defaye, J.; García Fernández, J.M. Probing secondary Carbohydrate−Protein interactions with highly dense cyclodextrin-centered heteroglycoclusters: the heterocluster effect. J. Am. Chem. Soc. 2005, 127, 7970–7971.
|
[29] |
Wolfenden, M.L.; Cloninger, M.J. Mannose/glucose-functionalized dendrimers to investigate the predictable tunability of multivalent interactions. J. Am. Chem. Soc. 2005, 127, 12168–12169.
|
[30] |
Becer, C.R.; Gibson, M.I.; Geng, J.; Ilyas, R.; Wallis, R.; Mitchell, D.A.; Haddleton, D.M. High-affinity glycopolymer binding to human DC-SIGN and disruption of DC-SIGN interactions with HIV envelope glycoprotein. J. Am. Chem. Soc. 2010, 132, 15130–15132.
|
[31] |
Jiménez Blanco, J.L.; Ortiz Mellet, C.; García Fernández, J.M. Multivalency in heterogeneous glycoenvironments: hetero-glycoclusters, -glycopolymers and -glycoassemblies. Chem. Soc. Rev. 2013, 42, 4518–4531.
|
[32] |
Li, Q.; Zhao, Y.T.; Meng, X.B.; Yan, T.T.; Li, S.C.; Huang, H.Q.; Zhao, Z.H.; Li, Z.J. Synthesis of two multivalent lactosides with anti-adhesive activity and their fluorescein-labeled and biotin-labeled derivatives. J. Chin. Pharm. Sci. 2011, 20, 325–334.
|
[33] |
Yao, W.; Xia, M.J.; Meng, X.B.; Li, Q.; Li, Z.J. Adaptable synthesis of C-lactosyl glycoclusters and their binding properties with galectin-3. Org. Biomol. Chem. 2014, 12, 8180–8195.
|
[34] |
Lepšík, M.; Field, M.J. Binding of calcium and other metal ions to the EF-hand loops of calmodulin studied by quantum chemical calculations and molecular dynamics simulations. J. Phys. Chem. B. 2007, 111, 10012–10022.
|
[35] |
The PyMOL Molecular Graphics System, Version 1.7 Schrödinger, LLC.
|
[36] |
Case, D.A.; Babin, V.; Berryman, J.T.; Betz, R.M.; Cai, Q.; Cerutti, D.S.; Cheatham, T.E.; Darden, T.A.; Duke, R.E.; Gohlke, H.; Goetz, A.W.; Gusarov, S.; Homeyer, N.; Janowski, P.; Kaus, J.; Kolossváry, I.; Kovalenko, A.; Lee, T.S.; LeGrand, S.; Luchko, T.; Luo, R.; Madej, B.; Merz, K.M.; Paesani, F.; Roe, D.R.; Roitberg, A.; Sagui, C.; Salomon-Ferrer, R.; Seabra, G.; Simmerling, C.L.; Smith, W.; Swails, J.; Walker; Wang, J.; Wolf, R.M.; Wu, X.; Kollman, P.A. Amber 14, University of California: San Francisco, 2014.
|
[37] |
Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct. Funct. Bioinform. 2006, 65, 712–725.
|
[38] |
Kohagen, M.; Lepšík, M.; Jungwirth, P. Calcium binding to calmodulin by molecular dynamics with effective polarization. J. Phys. Chem. Lett. 2014, 5, 3964–3969.
|
[39] |
Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 1989, 162, 165–169.
|
[40] |
Sanner, M.F. Python: a programming language for software integration and development. J. Mol. Graph. Model. 1999, 17, 57–61.
|
[41] |
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461.
|
[1] | Ping Shang, Lin Liu, Yi Fang. Investigating the mechanism of action of Gui Zhi Fu Ling Wan in the treatment of endometriosis based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 704-719. |
[2] | Yuxia Zhu, Lingjian Zhang, Yiming Hu, Weihua Liu, Liping Guan, Lin Lin. Study on synthesis of naringenin derivatives and cholinesterase inhibitory activity in marine Chinese medicine [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 636-644. |
[3] | Dongyan Wu, Xiaodan Wang, Jinmiao Chai, Qinqing Li, Yue Li, Mei Bi, Wanwei Gui, Huimin Cao. Study on the mechanism of Danggui Buxue decoction in the treatment of diabetic retinopathy based on network pharmacology and experiment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 527-538. |
[4] | Min Ao, Minglan Bao, Yaxing Hou, Ying Yue, Huifang Li, Guohua Wu, Su Ri Ga La Tu. Study on the mechanism of Mongolian medicine Herba Lomatognii against acute liver injury based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 268-282. |
[5] | Yajing Li, Yawen Bai, Yu Du, Changhong Yan, Chunjie Ma, Lining Sun, Fengyue Bu, Haoyang Yan. Yu Ping Feng Powder for chronic glomerulonephritis treatment: A meta-analysis and network pharmacology study [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(12): 1006-1026. |
[6] | Zhiyong Sun, Shuli Gao, Yang Zhang, Gangqiang Xue, Zilin Yuan, Shaonan Wang. Study on the potential mechanism of Pu Gong Ying in treating breast hyperplasia based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 893-910. |
[7] | Daiying Zhou, Jing Chen, Zhigang Lv. Network pharmacology prediction and molecular docking-based study on the mechanism of Erigeron breviscapus in the treatment of age-related macular degeneratio [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 923-934. |
[8] | Ning Ding, Tao Zhang, Ji Luo, Haochen Liu, Yu Deng, Yongheng He. Study on the mechanism of Baishao Qiwu Decoction in the treatment of colorectal cancer based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(1): 17-31. |
[9] | Ipargul Hafiz, Zhaozhi Wang, Hongji He, Zhezhe Li, Mei Wang. Exploring the mechanism of Peganum harmala L. seeds on hepatocellular carcinoma based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(7): 517-529. |
[10] | Ao Sun, Zipeng Li, Ting Liu, Xiangbao Meng, Shuchun Li, Zhongjun Li. Improvement of Kdo's efficient large-scale chemical synthesis method [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(2): 97-107. |
[11] | Yan Shang, Xiaoyuan Lin, Tiantian Zhang, Lihua Xie, Guoheng Hu. Investigation on the mechanism of YQHX against cerebral ischemic injury based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(2): 117-133. |
[12] | Xiaohui Du, Hongyan Yang, Tao Wang, Hongxia Cui, Yu Lin, Hongling Li. Deciphering the latent mechanism of nobiletin in the treatment of metabolic syndrome based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 803-823. |
[13] | Huijie Lv, Tuo Xv, Jun Peng, Gang Luo, Jianqin He, Sisi Yang, Tiancheng Zhang, Shuidong Feng, Hongyan Ling. Dihydromyricetin improves liver fat deposition in high-fat diet-induced obese mice [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 824-839. |
[14] | Yuehua Liu, Zhangqin Xue, Jianming Wei, Ruomeng Wei, Baodong Yin, Aiqin Liu. Study on drug synthesis and activity of sodium olpadronate [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 883-892. |
[15] | Lijuan Jiang, Tingting Cao, Ruoyi Yang, Ying Li, Lin Dong, Shufan Yin. Design, synthesis, and biological evaluation of a series of novel cordycepin derivatives [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(1): 55-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||