Journal of Chinese Pharmaceutical Sciences ›› 2021, Vol. 30 ›› Issue (9): 716-724.DOI: 10.5246/jcps.2021.09.059
• Original articles • Previous Articles Next Articles
Qian Wang, Chennan Liu, Jiangxue Han, Sihan Liu, Chunling Xiao, Yan Guan, Xinghua Li, Ying Wang, Xiao Wang, Jianzhou Meng, Maoluo Gan, Yishuang Liu*()
Received:
2021-03-10
Revised:
2021-05-23
Accepted:
2021-08-11
Online:
2021-09-27
Published:
2021-09-27
Contact:
Yishuang Liu
Supporting:
Qian Wang, Chennan Liu, Jiangxue Han, Sihan Liu, Chunling Xiao, Yan Guan, Xinghua Li, Ying Wang, Xiao Wang, Jianzhou Meng, Maoluo Gan, Yishuang Liu. (–)-Epicatechin gallate serves as a novel new delhi metallo-β-lactamase-1 (NDM-1) inhibitor[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(9): 716-724.
[1] |
Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules. 2020, 25, 1340.
|
[2] |
Fritzenwanker, M.; Imirzalioglu, C.; Herold, S.; Wagenlehner, F.M.; Zimmer, K.P.; Chakraborty, T. Treatment options for carbapenem-resistant gram-negative infections. Dtsch. Arztebl. Int. 2018, 115, 345–352.
|
[3] |
Nordmann, P.; Poirel, L. Epidemiology and diagnostics of carbapenem resistance in gram-negative bacteria. Clin. Infect. Dis. 2019, 69, S521–S528.
|
[4] |
Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization. http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_ 25Feb-ET_NM_WHO.pdf.
|
[5] |
Bonomo, R.A.; Burd, E.M.; Conly, J.; Limbago, B.M.; Poirel, L.; Segre, J.A.; Westblade, L.F. Carbapenemase-producing organisms: a global scourge. Clin. Infect. Dis. 2018, 66, 1290–1297.
|
[6] |
Shi, C.; Chen, J.; Kang, X.; Shen, X.; Lao, X.; Zheng, H. Approaches for the discovery of metallo-β-lactamase inhibitors: A review. ChemBiol. Drug Des. 2019, 94, 1427–1440.
|
[7] |
Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. Β-lactamases and β-lactamase inhibitors in the 21st century. J. Mol. Biol. 2019, 431, 3472–3500.
|
[8] |
Linciano, P.; Cendron, L.; Gianquinto, E.; Spyrakis, F.; Tondi, D. Ten years with new Delhi metallo-β-lactamase-1 (NDM-1): from structural insights to inhibitor design. ACS Infect. Dis. 2019, 5, 9–34.
|
[9] |
Liu, B.; Trout, R.E.L.; Chu, G.H.; McGarry, D.; Jackson, R.W.; Hamrick, J.C.; Daigle, D.M.; Cusick, S.M.; Pozzi, C.; De Luca, F.; Benvenuti, M.; Mangani, S.; Docquier, J.D.; Weiss, W.J.; Pevear, D.C.; Xerri, L.; Burns, C.J. Discovery of taniborbactam (VNRX-5133): a broad-spectrum serine- and metallo-β-lactamase inhibitor for carbapenem-resistant bacterial infections. J. Med. Chem. 2020, 63, 2789–2801.
|
[10] |
Fu, B.; Zeng, Q.H.; Zhang, Z.T.; Qian, M.Y.; Chen, J.C.; Dong, W.L.; Li, M. Epicatechin gallate protects HBMVECs from ischemia/reperfusion injury through ameliorating apoptosis and autophagy and promoting neovascularization. Oxidative Med. Cell. Longev. 2019, 2019, 7824684.
|
[11] |
Esmaeelpanah, E.; Razavi, B.M.; Vahdati Hasani, F.; Hosseinzadeh, H. Evaluation of epigallocatechin gallate and epicatechin gallate effects on acrylamide-induced neurotoxicity in rats and cytotoxicity in PC 12 cells. Drug Chem. Toxicol. 2018, 41, 441–448.
|
[12] |
Sánchez-Tena, S.; Alcarraz-Vizán, G.; Marín, S.; Torres, J.L.; Cascante, M. Epicatechin gallate impairs colon cancer cell metabolic productivity. J. Agric. Food Chem. 2013, 61, 4310–4317.
|
[13] |
Satsu, H.; Awara, S.; Unno, T.; Shimizu, M. Suppressive effect of nobiletin and epicatechin gallate on fructose uptake in human intestinal epithelial Caco-2 cells. Biosci. Biotechnol. Biochem. 2018, 82, 636–646.
|
[14] |
Stevens, C.S.; Rosado, H.; Harvey, R.J.; Taylor, P.W. Epicatechin gallate, a naturally occurring polyphenol, alters the course of infection with β-lactam-resistant Staphylococcus aureus in the zebrafish embryo. Front Microbiol. 2015, 6, 1043.
|
[15] |
Huang, C.C.; Wu, W.B.; Fang, J.Y.; Chiang, H.S.; Chen, S.K.; Chen, B.H.; Chen, Y.T.; Hung, C.F. (–)-Epicatechin-3-gallate, a Green Tea Polyphenol Is a Potent Agent Against UVB-induced Damage in HaCaT Keratinocytes. Molecules. 2007, 12, 1845–1858.
|
[16] |
Han, J.X.; Xiao, C.L.; Gan, M.L.; Li, X.H.; Wang, Y.; Zheng, J.Y.; Li, D.S.; Liu, C.C.; Guan, Y.; Meng, J.Z.; Huang, S.C.; Liu, Y.S. IMB-XH1 identified as a novel inhibitor of New Delhi metallo-β-lactamase-1. J. Chin. Pharm. Sci. 2019, 28, 238–246.
|
[17] |
Farhat, N.; Khan, A.U. Evolving trends of New Delhi Metallo-betalactamse (NDM) variants: a threat to antimicrobial resistance. Infect. Genet. Evol. 2020, 86, 104588.
|
[18] |
Iovleva, A.; Doi, Y. Carbapenem-Resistant Enterobacteriaceae. Clin. Lab. Med. 2017, 37, 303–315.
|
[19] |
Tamma, P.D.; Rodriguez-Bano, J. The Use of Noncarbapenem β-Lactams for the Treatment of Extended-Spectrum β-Lactamase Infections. Clin Infect Dis. 2017, 64, 972–980.
|
[20] |
Groundwater, P.W.; Xu, S.; Lai, F.; Váradi, L.; Tan, J.; Perry, J.D.; Hibbs, D.E. New Delhi metallo-β-lactamase-1: structure, inhibitors and detection of producers. Future Med. Chem. 2016, 8, 993–1012.
|
[21] |
King, A.M.; Reid-Yu, S.A.; Wang, W.; King, D.T.; De Pascale, G.; Strynadka, N.C.; Walsh, T.R.; Coombes, B.K.; Wright, G.D. AMA overcomes antibiotic resistance by NDM and VIM metallo-β-lactamases. Nature. 2014, 510, 503–506.
|
[22] |
Porter, N.J.; Christianson, D.W. Structure, mechanism, and inhibition of the zinc-dependent histone deacetylases. Curr. Opin. Struct. Biol. 2019, 59, 9–18.
|
[23] |
Bernstein, K.E.; Khan, Z.; Giani, J.F.; Cao, D.Y.; Bernstein, E.A.; Shen, X.Z. Angiotensin-converting enzyme in innate and adaptive immunity. Nat. Rev. Nephrol. 2018, 14, 325–336.
|
[24] |
Wang, X.; Khalil, R.A. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv. Pharmacol. 2018, 81, 241–330.
|
[1] | Xiaowei Chi, Qi Li, Yi Zhong, Tong Gong, Chuxiao Yi, Liangren Zhang, Zhenming Liu. Discovery of potential xanthine oxidase inhibitors based on virtual screening [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 626-635. |
[2] | Yuxia Zhu, Lingjian Zhang, Yiming Hu, Weihua Liu, Liping Guan, Lin Lin. Study on synthesis of naringenin derivatives and cholinesterase inhibitory activity in marine Chinese medicine [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 636-644. |
[3] | Chonghao Wu, Panjie Huang, Chunqi Yang, Chuan Gao, Ming Zeng. The efficacy and safety of immune checkpoint inhibitors in malignant pleural mesothelioma: A systematic review [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 291-301. |
[4] | Xiaohui Li, Qian Wang, Chennan Liu, Jiangxue Han, Sihan Liu, Tianjun Liu, Qian Wang, Yan Guan, Chunling Xiao, Xiao Wang, Yishuang Liu. PHT427 functions as a novel inhibitor of KPC-2 [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(12): 989-997. |
[5] | Ying Fu, Simo Liu, Yan Ma, Nannan Wu. Canagliflozin, an inhibitor of sodium-glucose co-transporter 2, advances in the treatment of type 2 diabetes [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(8): 569-588. |
[6] | Aris Stiawan, Eti Nurwening Sholikhah, Yehezkiel Steven Kurniawan, Yoga Priastomo, Jumina. Synthesis, cytotoxicity assay, and molecular docking study of hydroxychalcone derivatives as potential tyrosinase inhibitors [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(8): 634-644. |
[7] | Chunxing Li, Yuanmin Zhu, Hua Liu, Zhao Xu. Efficacy of prokinetic drugs in combination with proton pump inhibitors versus proton pump inhibitors alone in the treatment of gastroesophageal reflux disease: a meta-analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(4): 347-356. |
[8] | Shaohong Luo, Liangliang Dong, Yiyuan Li, Dan Xu, Min Chen. Cost-effectiveness analysis of tyrosine kinase inhibitors (erlotinib, gefitinib, afatinib and osimertinib) as first-line therapy for epidermal growth factor receptor-mutated advanced non-small cell lung cancer [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(3): 253-263. |
[9] | Jing Zhou, Hong Zhang, Xiaojiao Li, Xiangshi Song, Mengmeng Zhang, Yanhua Ding. Analysis of the effect of HCV resistance-associated substitutions on the short-term efficacy of DAA after single administration in three phase Ib clinical trials [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(2): 133-145. |
[10] | Yan Zhou, Hengwen Song, Zhichao Shao, Bomin Yin, Ximei Fu, Dianyou Xie, Lijun Wei. Preclinical efficacy of a novel cyclin-dependent kinase 9 inhibitor, QHRD107 against acute myeloid leukemia [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(2): 146-156. |
[11] | State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center. The group of Professor Xiaoda Yang has made important progress in protein phosphatase inhibitors based on vanadium active groups [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(11): 932-933. |
[12] | Chennan Liu, Qian Wang, Jiangxue Han, Sihan Liu, Chunling Xiao, Yan Guan, Xinghua Li, Ying Wang, Xiao Wang, Jianzhou Meng, Maoluo Gan, Yishuang Liu. Virtual screening and high-throughput testing of L1 metallo-β-lactamase inhibitor [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(10): 806-812. |
[13] | State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center. The group of Professor Xinjing Tang has made progress in the study of cyclic antisense oligonucleotides as microRNA inhibitors [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(10): 855-856. |
[14] | Ying Kang, Chanjuan Zhang, He Zhang, Dong Liu. Secondary metabolites from a deep-sea-derived Aspergillus versicolor F77 [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(1): 42-48. |
[15] | Peili Jiao, Yiyan Li, Xing Wu, Yuxi Wang, Beibei Mao, Hongwei Jin, Lihe Zhang, Liangren Zhang, Zhenming Liu. Structure-based design and biological evaluation of novel mTOR inhibitors as potential anti-cervical agents [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(9): 603-616. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||