Journal of Chinese Pharmaceutical Sciences ›› 2021, Vol. 30 ›› Issue (5): 359-380.DOI: 10.5246/jcps.2021.05.029
• Reviews • Next Articles
Jinglei Wang, Ke Song, Hao Pan, Yang Liu, Dazhuang Wang, Lijian Chen*()
Received:
2020-08-12
Revised:
2020-09-27
Accepted:
2020-11-17
Online:
2021-05-31
Published:
2021-05-29
Contact:
Lijian Chen
Supporting:
Jinglei Wang, Ke Song, Hao Pan, Yang Liu, Dazhuang Wang, Lijian Chen. Nanomedicine for tumor therapy-current status and challenges[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(5): 359-380.
[1] |
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release. 2000, 65, 271–284.
|
[2] |
Divsalar, A.; Saboury, A.A.; Nabiuni, M.; Zare, Z.; Kefayati, M.E.; Seyedarabi, A. Characterization and side effect analysis of a newly designed nanoemulsion targeting human serum albumin for drug delivery. Colloids Surf. B Biointerfaces. 2012, 98, 80–84.
|
[3] |
Wang, X.L.; Liang, Y.Q.; Zhang, Y.; He, B.; Dai, W.B.; Zhang, H.; Wang, X.Q.; Zhang, Q. Combination therapy of cRGD-DOX self-assembled nanoparticles and bevacizumab for breast cancer. J. Chin. Pharm. Sci. 2019, 28, 627–640.
|
[4] |
Benizri, S.; Ferey, L.; Alies, B.; Mebarek, N.; Vacher, G.; Appavoo, A.; Staedel, C.; Gaudin, K.; Barthélémy, P. Nucleoside-lipid-based nanocarriers for sorafenib delivery. Nanoscale Res. Lett. 2018, 13, 17.
|
[5] |
Abdellatif, A.A.H.; El-Telbany, D.F.A.; Zayed, G.; Al-Sawahli, M.M. Hydrogel containing PEG-coated fluconazole nanoparticles with enhanced solubility and antifungal activity. J. Pharm. Innov. 2019, 14, 112–122.
|
[6] |
Xia, Y.; Xu, T.T.; Wang, C.B.; Li, Y.H.; Lin, Z.F.; Zhao, M.Q.; Zhu, B. Novel functionalized nanoparticles for tumor-targeting co-delivery of doxorubicin and siRNA to enhance cancer therapy. Int. J. Nanomed. 2017, 13, 143–159.
|
[7] |
Field, L.D.; Walper, S.A.; Susumu, K.; Lasarte-Aragones, G.; Oh, E.; Medintz, I.L.; Delehanty, J.B. A quantum dot-protein bioconjugate that provides for extracellular control of intracellular drug release. Bioconjug. Chem. 2018, 29, 2455–2467.
|
[8] |
Attari, Z.; Kalvakuntla, S.; Reddy, M.S.; Deshpande, M.; Rao, C.M.; Koteshwara, K.B. Formulation and characterisation of nanosuspensions of BCS class II and IV drugs by combinative method. J. Exp. Nanosci. 2016, 11, 276–288.
|
[9] |
Xiao, H.H.; Song, H.Q.; Yang, Q.; Cai, H.D.; Qi, R.G.; Yan, L.S.; Liu, S.; Zheng, Y.H.; Huang, Y.B.; Liu, T.J.; Jing, X.B. A prodrug strategy to deliver cisplatin(IV) and paclitaxel in nanomicelles to improve efficacy and tolerance. Biomaterials. 2012, 33, 6507–6519.
|
[10] |
Lu, X.; Wang, Q.Q.; Xu, F.J.; Tang, G.P.; Yang, W.T. A cationic prodrug/therapeutic gene nanocomplex for the synergistic treatment of tumors. Biomaterials. 2011, 32, 4849–4856.
|
[11] |
Sun, J.J.; Liu, Y.H.; Chen, Y.C.; Zhao, W.C.; Zhai, Q.Y.; Rathod, S.; Huang, Y.X.; Tang, S.Q.; Kwon, Y.T.; Fernandez, C.; Venkataramanan, R.; Li, S. Doxorubicin delivered by a redox-responsive dasatinib-containing polymeric prodrug carrier for combination therapy. J. Control. Release. 2017, 258, 43–55.
|
[12] |
Kaur, A.; Jyoti, K.; Baldi, A.; Jain, U.K.; Chandra, R.; Madan, J. Self-assembled nanomicelles of amphiphilic clotrimazole glycyl-glycine analogue augmented drug delivery, apoptosis and restrained melanoma tumour progression. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 89, 75–86.
|
[13] |
Fan, Y.C.; Du, W.W.; He, B.; Fu, F.Y.; Yuan, L.; Wu, H.N.; Dai, W.B.; Zhang, H.; Wang, X.Q.; Wang, J.C.; Zhang, X.; Zhang, Q. The reduction of tumor interstitial fluid pressure by liposomal imatinib and its effect on combination therapy with liposomal doxorubicin. Biomaterials. 2013, 34, 2277–2288.
|
[14] |
Jin, H.L.; Wan, C.; Zou, Z.W.; Zhao, G.F.; Zhang, L.L.; Geng, Y.Y.; Chen, T.; Huang, A.; Jiang, F.G.; Feng, J.P.; Lovell, J.F.; Chen, J.; Wu, G.; Yang, K.Y. Tumor ablation and therapeutic immunity induction by an injectable peptide hydrogel. ACS Nano. 2018, 12, 3295–3310.
|
[15] |
Geng, H.J.; Zhao, Y.T.; Liu, J.; Cui, Y.; Wang, Y.; Zhao, Q.F.; Wang, S.L. Hollow mesoporous silica as a high drug loading carrier for regulation insoluble drug release. Int. J. Pharm. 2016, 510, 184–194.
|
[16] |
Li, J.; Liang, X.; Zhang, J.; Yin, Y.Z.; Zuo, T.T.; Wang, Y.Y.; Yang, X.M.; Shen, Q. Inhibiting pulmonary metastasis of breast cancer based on dual-targeting graphene oxide with high stability and drug loading capacity. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1237–1248.
|
[17] |
Heister, E.; Neves, V.; Lamprecht, C.; Silva, S.R.P.; Coley, H.M.; McFadden, J. Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. Carbon. 2012, 50, 622–632.
|
[18] |
Bianco, A. Graphene: safe or toxic? the two faces of the medal. Angew. Chem. Int. Ed. 2013, 52, 4986–4997.
|
[19] |
Niikura, K.; Iyo, N.; Matsuo, Y.; Mitomo, H.; Ijiro, K. Sub-100 nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation. ACS Appl. Mater. Interfaces. 2013, 5, 3900–3907.
|
[20] |
Li, J.C.; Hu, Y.; Yang, J.; Wei, P.; Sun, W.J.; Shen, M.W.; Zhang, G.X.; Shi, X.Y. Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials. 2015, 38, 10–21.
|
[21] |
Almeida, J.P.M.; Chen, A.L.; Foster, A.; Drezek, R. In vivo biodistribution of nanoparticles. Nanomedicine. 2011, 6, 815–835.
|
[22] |
Gao, M.; Liang, C.; Song, X.J.; Chen, Q.; Jin, Q.T.; Wang, C.; Liu, Z. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater. 2017, 29, 1701429.
|
[23] |
Farooqi, A.A.; Desai, N.N.; Qureshi, M.Z.; Librelotto, D.R.N.; Gasparri, M.L.; Bishayee, A.; Nabavi, S.M.; Curti, V.; Daglia, M. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol. Adv. 2018, 36, 328–334.
|
[24] |
Tang, B.; Fang, G.H.; Gao, Y.; Liu, Y.; Liu, J.W.; Zou, M.J.; Wang, L.H.; Cheng, G. Lipid-albumin nanoassemblies co-loaded with borneol and paclitaxel for intracellular drug delivery to C6 glioma cells with P-gp inhibition and its tumor targeting. Asian J. Pharm. Sci. 2015, 10, 363–371.
|
[25] |
Zhu, J.Y.; Zheng, D.W.; Zhang, M.K.; Yu, W.Y.; Qiu, W.X.; Hu, J.J.; Feng, J.; Zhang, X.Z. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett. 2016, 16, 5895–5901.
|
[26] |
Zhou, C.H.; Hu, X.P.; Liu, Q.; Wang, L.Q.; Zhou, Y.H.; Jin, Y.; Liu, Y. Enhanced tumor-targeted delivery of anticancer drugs by folic acid-conjugated pH-sensitive polymeric micelles. J. Chin. Pharm. Sci. 2020, 29, 626–636.
|
[27] |
Meng, H.; Zhao, Y.; Dong, J.Y.; Xue, M.; Lin, Y.S.; Ji, Z.X.; Mai, W.X.; Zhang, H.Y.; Chang, C.H.; Brinker, C.J.; Zink, J.I.; Nel, A.E. Two-wave nanotherapy to target the stroma and optimize gemcitabine delivery to a human pancreatic cancer model in mice. ACS Nano. 2013, 7, 10048–10065.
|
[28] |
Araki, T.; Ogawara, K.I.; Suzuki, H.; Kawai, R.E.; Watanabe, T.I.; Ono, T.; Higaki, K. Augmented EPR effect by photo-triggered tumor vascular treatment improved therapeutic efficacy of liposomal paclitaxel in mice bearing tumors with low permeable vasculature. J. Control. Release. 2015, 200, 106–114.
|
[29] |
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release. 2015, 200, 138–157.
|
[30] |
Park, K. Facing the truth about nanotechnology in drug delivery. ACS Nano. 2013, 7, 7442–7447.
|
[31] |
Etheridge, M.L.; Campbell, S.A.; Erdman, A.G.; Haynes, C.L.; Wolf, S.M.; McCullough, J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 1–14.
|
[32] |
Lammers, T.; Kiessling, F.; Hennink, W.E.; Storm, G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J. Control. Release. 2012, 161, 175–187.
|
[33] |
Meacham, C.E.; Morrison, S.J. Tumour heterogeneity and cancer cell plasticity. Nature. 2013, 501, 328–337.
|
[34] |
Marte, B. Tumour heterogeneity. Nature. 2013, 501, 327.
|
[35] |
Straussman, R.; Morikawa, T.; Shee, K.; Barzily-Rokni, M.; Golub, T.R. Tumor microenvironment induces innate RAF-inhibitor resistance through HGF secretion. Nature. 2012, 487, 500–504.
|
[36] |
Gkolfinopoulos, S.; Mountzios, G. Beyond EGFR and ALK: targeting rare mutations in advanced non-small cell lung cancer. Ann. Transl. Med. 2018, 6, 142.
|
[37] |
Hanibuchi, M.; Kim, S.J.; Fidler, I.J.; Nishioka, Y. The molecular biology of lung cancer brain metastasis: an overview of current comprehensions and future perspectives. J. Med. Invest. 2014, 61, 241–253.
|
[38] |
Early Breast Cancer Trialists' Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet. 1998, 351, 1451–1467.
|
[39] |
Hondermarck, H.; Vercoutter-Edouart, A.S.; Révillion, F.; Lemoine, J.; El-Yazidi-belkoura, I.; Nurcombe, V.; Peyrat, J.P. Proteomics of breast cancer for marker discovery and signal pathway profiling. Proteomics. 2001, 1, 1216–1232.
|
[40] |
Petty, R.D.; Dahle-Smith, A.; Miedzybrodzka, Z.; Dutton, S.J.; Murray, G.I.; Stevenson, D.; Massie, D.; Osbourne, A.; Clark, C.; Mansoor, W.; Thompson, J.; Harrison, M.; Chatterjee, A.; Falk, S.; Elyan, S.; Garcia-Alonso, A.; Fyfe, D.W.; Chau, I.; Collinson, D.; Ferry, D. Epidermal growth factor receptor copy number gain (EGFR CNG) and response to gefitinib in esophageal cancer (EC): Results of a biomarker analysis of a phase III trial of gefitinib versus placebo (TRANS-COG). J. Clin. Oncol. 2014, 32, 4016.
|
[41] |
Friedl, P.; Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer. 2003, 3, 362–374.
|
[42] |
Zhao, G.B.; Zhu, G.W.; Huang, Y.J.; Zheng, W.; Hua, J.; Yang, S.G.; Zhuang, J.F.; Ye, J.X. IL-6 mediates the signal pathway of JAK-STAT3-VEGF-C promoting growth, invasion and lymphangiogenesis in gastric cancer. Oncol. Rep. 2016, 35, 1787–1795.
|
[43] |
Sukawa, Y.; Yamamoto, H.; Nosho, K.; Ito, M.; Igarashi, H.; Naito, T.; Mitsuhashi, K.; Matsunaga, Y.; Takahashi, T.; Mikami, M.; Adachi, Y.; Suzuki, H.; Shinomura, Y. HER2 expression and PI3K-Akt pathway alterations in gastric cancer. Digestion. 2014, 89, 12–17.
|
[44] |
Okano, J.I.; Nagahara, T.; Matsumoto, K.; Murawaki, Y. The growth inhibition of liver cancer cells by paclitaxel and the involvement of extracellular signal-regulated kinase and apoptosis. Oncol. Rep. 2007, 1, 1195–1200.
|
[45] |
Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Siebels, M.; Negrier, S.; Chevreau, C.; Solska, E.; Desai, A.A.; Rolland, F.; Demkow, T.; Hutson, T.E.; Gore, M.; Freeman, S.; Schwartz, B.; Shan, M.; Simantov, R.; Bukowski, R.M. Sorafenib in advanced clear-cell renal-cell carcinoma. Uro. Oncol. Semin. Original Invest. 2007, 356, 125–34.
|
[46] |
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664.
|
[47] |
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release. 2000, 65, 271–284.
|
[48] |
Hodkinson, P.S.; MacKinnon, A.C.; Sethi, T. Extracellular matrix regulation of drug resistance in small-cell lung cancer. Int. J. Radiat. Biol. 2007, 83, 733–741.
|
[49] |
Frisch, S.M.; Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 1994, 124, 619–626.
|
[50] |
Miao, L.; Huang, L. Exploring the tumor microenvironment with nanoparticles. Cancer Treat. Res. 2015, 166, 193–226.
|
[51] |
Liu, S.; Agalliu, D.; Yu, C.H.; Fisher, M. The role of pericytes in blood-brain barrier function and stroke. Curr. Pharm. Des. 2012, 18, 3653–3662.
|
[52] |
Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release. 2016, 244, 108–121.
|
[53] |
Zhang, L.Z.; Nishihara, H.; Kano, M.R. Pericyte-coverage of human tumor vasculature and nanoparticle permeability. Biol. Pharm. Bull. 2012, 35, 761–766.
|
[54] |
Kano, M.R. Nanotechnology and tumor microcirculation. Adv. Drug Deliv. Rev. 2014, 74, 2–11.
|
[55] |
Kanomata, N. Impact of tumor size on the clinical outcomes of patients with Robson Stage I renal cell carcinoma. Cancer. 1999, 86, 545–546.
|
[56] |
Zhou, W.C.; Chen, C.; Shi, Y.; Wu, Q.L.; Gimple, R.C.; Fang, X.G.; Huang, Z.; Zhai, K.; Ke, S.Q.; Ping, Y.F.; Feng, H.; Rich, J.N.; Yu, J.S.; Bao, S.D.; Bian, X.W. Targeting glioma stem cell-derived pericytes disrupts the blood-tumor barrier and improves chemotherapeutic efficacy. Cell Stem Cell. 2017, 21, 591–603.e4.
|
[57] |
Kano, M.R.; Komuta, Y.; Iwata, C.; Oka, M.; Shirai, Y.T.; Morishita, Y.; Ouchi, Y.; Kataoka, K.; Miyazono, K. Comparison of the effects of the kinase inhibitors imatinib, sorafenib, and transforming growth factor-β receptor inhibitor on extravasation of nanoparticles from neovasculature. Cancer Sci. 2009, 100, 173–180.
|
[58] |
Kano, M.R. Nanotechnology and tumor microcirculation. Adv. Drug Deliv. Rev. 2014, 74, 2–11.
|
[59] |
Bose, A.; Barik, S.; Banerjee, S.; Ghosh, T.; Mallick, A.; Bhattacharyya Majumdar, S.; Goswami, K.K.; Bhuniya, A.; Banerjee, S.; Baral, R.; Storkus, W.J.; Dasgupta, P.S.; Majumdar, S. Tumor-derived vascular pericytes anergize Th cells. J. Immunol. 2013, 191, 971–981.
|
[60] |
Ensign, L.M.; Cone, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 2012, 64, 557–570.
|
[61] |
Fröhlich, E.; Roblegg, E. Mucus as barrier for drug delivery by nanoparticles. J. Nanosci. Nanotechnol. 2014, 14, 126–136.
|
[62] |
Hurkat, P.; Jain, A.; Jain, A.; Shilpi, S.; Gulbake, A.; Jain, S.K. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery. J. Nanopart. Res. 2012, 14, 1219.
|
[63] |
Jain, S.; Rathi, V.V.; Jain, A.K.; Das, M.; Godugu, C. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine. 2012, 7, 1311–1337.
|
[64] |
Tian, B.S.; Liu, S.H.; Wu, S.Y.; Lu, W.; Wang, D.; Jin, L.; Hu, B.; Li, K.; Wang, Z.L.; Quan, Z.W. pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin. Colloids Surf. B Biointerfaces. 2017, 154, 287–296.
|
[65] |
Pi, J.X.; Wang, S.Y.; Li, W.; Kebebe, D.; Zhang, Y.; Zhang, B.; Qi, D.L.; Guo, P.; Li, N.; Liu, Z.D. A nano-cocrystal strategy to improve the dissolution rate and oral bioavailability of baicalein. Asian J. Pharm. Sci. 2019, 14, 154–164.
|
[66] |
Aggarwal, P.; Hall, J.B.; McLeland, C.B.; Dobrovolskaia, M.A.; McNeil, S.E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 2009, 61, 428–437.
|
[67] |
Yogasundaram, H.; Bahniuk, M.S.; Singh, H.D.; Aliabadi, H.M.; Uludaǧ, H.; Unsworth, L.D. BSA nanoparticles for siRNA delivery: coating effects on nanoparticle properties, plasma protein adsorption, and In Vitro siRNA delivery. Int. J. Biomater. 2012, 2012, 1–10.
|
[68] |
Dutta, D.; Sundaram, S.K.; Teeguarden, J.G.; Riley, B.J.; Fifield, L.S.; Jacobs, J.M.; Addleman, S.R.; Kaysen, G.A.; Moudgil, B.M.; Weber, T.J. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol. Sci. 2007, 100, 303–315.
|
[69] |
Diederichs, J.E. Plasma protein adsorption patterns on liposomes: Establishment of analytical procedure. Electrophoresis. 1996, 17, 607–611.
|
[70] |
Hu, Z.Y.; Zhang, H.Y.; Zhang, Y.; Wu, R.A.; Zou, H.F. Nanoparticle size matters in the formation of plasma protein coronas on Fe3O4 nanoparticles. Colloids Surf. B Biointerfaces. 2014, 121, 354–361.
|
[71] |
Zuckerman, J.E.; Davis, M.E. Targeting therapeutics to the glomerulus with nanoparticles. Adv. Chronic Kidney Dis. 2013, 20, 500–507.
|
[72] |
Zuckerman, J.E.; Choi, C.H.J.; Han, H.; Davis, M.E. Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. PNAS. 2012, 109, 3137–3142.
|
[73] |
Liu, J.B.; Yu, M.X.; Zhou, C.; Zheng, J. Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Mater. Today. 2013, 16, 477–486.
|
[74] |
Soo Choi, H.; Liu, W.H.; Misra, P.; Tanaka, E.; Zimmer, J.P.; Itty Ipe, B.; Bawendi, M.G.; Frangioni, J.V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165–1170.
|
[75] |
Gómez-Vallejo, V.; Puigivila, M.; Plaza-García, S.; Szczupak, B.; Piñol, R.; Murillo, J.L.; Sorribas, V.; Lou, G.; Veintemillas, S.; Ramos-Cabrer, P.; Llop, J.; Millán, A. PEG-copolymer-coated iron oxide nanoparticles that avoid the reticuloendothelial system and act as kidney MRI contrast agents. Nanoscale. 2018, 10, 14153–14164.
|
[76] |
Colombo, C.; Li, M.; Watanabe, S.; Messa, P.; Edefonti, A.; Montini, G.; Moscatelli, D.; Rastaldi, M.P.; Cellesi, F. Polymer nanoparticle engineering for podocyte repair: from in vitro models to new nanotherapeutics in kidney diseases. ACS Omega. 2017, 2, 599–610.
|
[77] |
Brannon-Peppas, L.; Blanchette, J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 2004, 56, 1649–1659.
|
[78] |
Kobayashi, H.; Watanabe, R.; Choyke, P.L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2013, 4, 81–89.
|
[79] |
Jung, B.; Shim, M.K.; Park, M.J.; Jang, E.H.; Yoon, H.Y.; Kim, K.; Kim, J.H. Hydrophobically modified polysaccharide-based on polysialic acid nanoparticles as carriers for anticancer drugs. Int. J. Pharm. 2017, 520, 111–118.
|
[80] |
Kim, Y.H.; Min, K.H.; Wang, Z.T.; Kim, J.; Jacobson, O.; Huang, P.; Zhu, G.Z.; Liu, Y.J.; Yung, B.; Niu, G.; Chen, X.Y. Development of sialic acid-coated nanoparticles for targeting cancer and efficient evasion of the immune system. Theranostics. 2017, 7, 962–973.
|
[81] |
Yin, J.T.; Wang, P.Q.; Yin, Y.Y.; Hou, Y.T.; Song, X.Y. Optimization on biodistribution and antitumor activity of tripterine using polymeric nanoparticles through RES saturation. Drug Deliv. 2017, 24, 1891–1897.
|
[82] |
Yue, J.; Wang, Z.; Shao, D.; Chang, Z.M.; Hu, R.; Li, L.; Luo, S.Z.; Dong, W.F. Cancer cell membrane-modified biodegradable mesoporous silica nanocarriers for berberine therapy of liver cancer. RSC Adv. 2018, 8, 40288–40297.
|
[83] |
Aoyama, M.; Hata, K.; Higashisaka, K.; Nagano, K.; Yoshioka, Y.; Tsutsumi, Y. Clusterin in the protein corona plays a key role in the stealth effect of nanoparticles against phagocytes. Biochem. Biophys. Res. Commun. 2016, 480, 690–695.
|
[84] |
CM de Lange, E. The physiological characteristics and transcytosis mechanisms of the blood-brain barrier (BBB). Curr. Pharm. Biotechnol. 2012, 13, 2319–2327.
|
[85] |
Song, Z.H.; Liu, T.; Chen, T.F. Overcoming blood–brain barrier by HER2-targeted nanosystem to suppress glioblastoma cell migration, invasion and tumor growth. J. Mater. Chem. B. 2018, 6, 568–579.
|
[86] |
Chai, Z.L.; Hu, X.F.; Wei, X.L.; Zhan, C.Y.; Lu, L.W.; Jiang, K.; Su, B.X.; Ruan, H.T.; Ran, D.N.; Fang, R.H.; Zhang, L.F.; Lu, W.Y. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J. Control. Release. 2017, 264, 102–111.
|
[87] |
Hajal, C.; Campisi, M.; Mattu, C.; Chiono, V.; Kamm, R.D. In vitro models of molecular and nano-particle transport across the blood-brain barrier. Biomicrofluidics. 2018, 12, 042213.
|
[88] |
Pamies, D.; Hartung, T.; Hogberg, H.T. Biological and medical applications of a brain-on-a-chip. Exp. Biol. Med. 2014, 239, 1096–1107.
|
[89] |
Kano, Mitsunobu R. Nanotechnology and tumor microcirculation. Adv. Drug Deliv. Rev. 2014, 74, 2–11.
|
[90] |
Dreher, M.R.; Liu, W.G.; Michelich, C.R.; Dewhirst, M.W.; Yuan, F.; Chilkoti, A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst. 2006, 98, 335–344.
|
[91] |
Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M.R.; Miyazono, K.; Uesaka, M.; Nishiyama, N.; Kataoka, K. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 2011, 6, 815–823.
|
[92] |
Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M.R.; Miyazono, K.; Uesaka, M.; Nishiyama, N.; Kataoka, K. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 2011, 6, 815–823.
|
[93] |
Chen, F.; Hong, H.; Zhang, Y.; Valdovinos, H.F.; Shi, S.X.; Kwon, G.S.; Theuer, C.P.; Barnhart, T.E.; Cai, W.B. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano. 2013, 7, 9027–9039.
|
[94] |
Tu, Z.X.; Achazi, K.; Schulz, A.; Mülhaupt, R.; Thierbach, S.; Rühl, E.; Adeli, M.; Haag, R. Combination of surface charge and size controls the cellular uptake of functionalized graphene sheets. Adv. Funct. Mater. 2017, 27, 1701837.
|
[95] |
Pan, Y.; Leifert, A.; Ruau, D.; Neuss, S.; Bornemann, J.; Schmid, G.; Brandau, W.; Simon, U.; Jahnen-Dechent, W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 2009, 5, 2067–2076.
|
[96] |
Oyewumi, M.O.; Kumar, A.; Cui, Z.R. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert. Rev. Vaccines. 2010, 9, 1095–1107.
|
[97] |
Dahmani, F.Z.; Yang, H.; Zhou, J.P.; Yao, J.; Zhang, T.; Zhang, Q. Enhanced oral bioavailability of paclitaxel in pluronic/LHR mixed polymeric micelles: Preparation, in vitro and in vivo evaluation. Eur. J. Pharm. Sci. 2012, 47, 179–189.
|
[98] |
Prasad, K.N.; Luong, T.T.; FlorenceJoelle Paris, A.T.; Vaution, C.; Seiller, M.; Puisieux, F. Surface activity and association of ABA polyoxyethylene: polyoxypropylene block copolymers in aqueous solution. J. Colloid Interface Sci. 1979, 69, 225–232.
|
[99] |
Mohammad, A.K.; Reineke, J.J. Quantitative detection of PLGA nanoparticle degradation in tissues following intravenous administration. Mol. Pharmaceutics. 2013, 10, 2183–2189.
|
[100] |
Bernabeu, E.; Cagel, M.; Lagomarsino, E.; Moretton, M.; Chiappetta, D.A. Paclitaxel: What has been done and the challenges remain ahead. Int. J. Pharm. 2017, 526, 474–495.
|
[101] |
Truong, N.P.; Whittaker, M.R.; Mak, C.W.; Davis, T.P. The importance of nanoparticle shape in cancer drug delivery. Expert. Opin. Drug Deliv. 2015, 12, 129–142.
|
[102] |
Geng, Y.; Dalhaimer, P.; Cai, S.S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D.E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007, 2, 249–255.
|
[103] |
Guo, Y.F.; Zhao, S.; Qiu, H.H.; Wang, T.; Zhao, Y.N.; Han, M.H.; Dong, Z.Q.; Wang, X.T. Shape of nanoparticles as a design parameter to improve docetaxel antitumor efficacy. Bioconjug. Chem. 2018, 29, 1302–1311.
|
[104] |
Decuzzi, P.; Lee, S.; Bhushan, B.; Ferrari, M. A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng. 2005, 33, 179–190.
|
[105] |
Decuzzi, P.; Pasqualini, R.; Arap, W.; Ferrari, M. Intravascular delivery of particulate systems: does geometry really matter? Pharm. Res. 2009, 26, 235–243.
|
[106] |
Gavze, E.; Shapiro, M. Motion of inertial spheroidal particles in a shear flow near a solid wall with special application to aerosol transport in microgravity. J. Fluid Mech. 1998, 371, 59–79.
|
[107] |
Gentile, F.; Chiappini, C.; Fine, D.; Bhavane, R.C.; Peluccio, M.S.; Cheng, M.M.C.; Liu, X.; Ferrari, M.; Decuzzi, P. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J. Biomech. 2008, 41, 2312–2318.
|
[108] |
Muro, S.; Garnacho, C.; Champion, J.A.; Leferovich, J.; Gajewski, C.; Schuchman, E.H.; Mitragotri, S.; Muzykantov, V.R. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther. 2008, 16, 1450–1458.
|
[109] |
Sun, Z.Z.; Worden, M.; Wroczynskyj, Y.; Manna, P.K.; Thliveris, J.A.; van Lierop, J.; Hegmann, T.; Miller, D.W. Differential internalization of brick shaped iron oxide nanoparticles by endothelial cells. J. Mater. Chem. B. 2016, 4, 5913–5920.
|
[110] |
Chauhan, V.P.; Popović, Z.; Chen, O.; Cui, J.; Fukumura, D.; Bawendi, M.G.; Jain, R.K. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem. Int. Ed. 2011, 50, 11417–11420.
|
[111] |
Wang, Y.C.; Black, K.C.L.; Luehmann, H.; Li, W.Y.; Zhang, Y.; Cai, X.; Wan, D.H.; Liu, S.Y.; Li, M.; Kim, P.; Li, Z.Y.; Wang, L.V.; Liu, Y.J.; Xia, Y.N. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano. 2013, 7, 2068–2077.
|
[112] |
Nizamov, T.R.; Garanina, A.S.; Grebennikov, I.S.; Zhironkina, O.A.; Strelkova, O.S.; Alieva, I.B.; Kireev, I.I.; Abakumov, M.A.; Savchenko, A.G.; Majouga, A.G. Effect of iron oxide nanoparticle shape on doxorubicin drug delivery toward LNCaP and PC-3 cell lines. BioNanoScience. 2018, 8, 394–406.
|
[113] |
Bhamidipati, M.; Fabris, L. Multiparametric assessment of gold nanoparticle cytotoxicity in cancerous and healthy cells: the role of size, shape, and surface chemistry. Bioconjugate Chem. 2017, 28, 449–460.
|
[114] |
Maurer-Jones, M.A.; Lin, Y.S.; Haynes, C.L. Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano. 2010, 4, 3363–3373.
|
[115] |
Yu, T.; Malugin, A.; Ghandehari, H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano. 2011, 5, 5717–5728.
|
[116] |
He, C.B.; Hu, Y.P.; Yin, L.C.; Tang, C.; Yin, C.H. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010, 31, 3657–3666.
|
[117] |
Liu, X.S.; Li, H.; Chen, Y.J.; Jin, Q.; Ren, K.F.; Ji, J. Mixed-charge nanoparticles for long circulation, low reticuloendothelial system clearance, and high tumor accumulation. Adv. Healthcare Mater. 2014, 3, 1439–1447.
|
[118] |
Silva, V.L.; Al-Jamal, W.T. Exploiting the cancer niche: Tumor-associated macrophages and hypoxia as promising synergistic targets for nano-based therapy. J. Control. Release. 2017, 253, 82–96.
|
[119] |
Leung, S.L.; Zha, Z.B.; Cohn, C.; Dai, Z.F.; Wu, X.Y. Anti-EGFR antibody conjugated organic-inorganic hybrid lipid nanovesicles selectively target tumor cells. Colloids Surf. B Biointerfaces. 2014, 121, 141–149.
|
[120] |
Sun, B.F.; Deng, C.; Meng, F.H.; Zhang, J.; Zhong, Z.Y. Robust, active tumor-targeting and fast bioresponsive anticancer nanotherapeutics based on natural endogenous materials. Acta Biomater. 2016, 45, 223–233.
|
[121] |
Leamon, C.P.; Cooper, S.R.; Hardee, G.E. Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo. Bioconjug. Chem. 2003, 14, 738–747.
|
[122] |
Lu, W.; Xiong, C.Y.; Zhang, R.; Shi, L.F.; Huang, M.; Zhang, G.D.; Song, S.L.; Huang, Q.; Liu, G.Y.; Li, C. Receptor-mediated transcytosis: a mechanism for active extravascular transport of nanoparticles in solid tumors. J. Control. Release. 2012, 161, 959–966.
|
[123] |
Zhang, L.; Hao, P.Y.; Yang, D.J.; Feng, S.; Peng, B.; Appelhans, D.; Zhang, T.H.; Zan, X.J. Designing nanoparticles with improved tumor penetration: surface properties from the molecular architecture viewpoint. J. Mater. Chem. B. 2019, 7, 953–964.
|
[124] |
Saha, K.; Rahimi, M.; Yazdani, M.; Kim, S.T.; Moyano, D.F.; Hou, S.; Das, R.; Mout, R.; Rezaee, F.; Mahmoudi, M.; Rotello, V.M. Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona. ACS Nano. 2016, 10, 4421–4430.
|
[125] |
Yan, Y.; Gause, K.T.; Kamphuis, M.M.J.; Ang, C.S.; O’brien-Simpson, N.M.; Lenzo, J.C.; Reynolds, E.C.; Nice, E.C.; Caruso, F. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano. 2013, 7, 10960–10970.
|
[126] |
Yang, M.Y.; Yu, L.X.; Guo, R.W.; Dong, A.J.; Lin, C.G.; Zhang, J.H. A modular coassembly approach to all-in-one multifunctional nanoplatform for synergistic codelivery of doxorubicin and curcumin. Nanomaterials. 2018, 8, 167.
|
[127] |
Zhang, M.K.; Wang, X.G.; Zhu, J.Y.; Liu, M.D.; Li, C.X.; Feng, J.; Zhang, X.Z. Double-targeting explosible nanofirework for tumor ignition to guide tumor-depth photothermal therapy. Small. 2018, 14, 1800292.
|
[128] |
Wang, J. Spatial targeting of tumor-associated macrophage and tumor cells with a designer nanocarrier for cancer chemo-immunotherapy. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2017, 291.
|
[129] |
Thoma, C.R.; Zimmermann, M.; Agarkova, I.; Kelm, J.M.; Krek, W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv. Drug Deliv. Rev. 2014, 69/70, 29–41.
|
[130] |
Christina, V.; Gabriel, H.; Bruce, G.; Francesco, P. A Mechanistic Tumor Penetration Model to Guide Antibody Drug Conjugate Design. PLoS One. 2015, 10, e0118977.
|
[131] |
Ozcelikkale, A.; Moon, H.R.; Linnes, M.; Han, B. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles. Wiley Interdisciplinary Rev. Nanomed. Nanobiotechnology. 2017, e1460.
|
[1] | Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center. Professor Yiguang Wang and his team developed new quantitative strategies for intracellular bioavailability of nanomedicines [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(5): 447-448. |
[2] | State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center. Professor Yiguang Wang and his team developed a novel nano-delivery strategy for programmed regulation of tumor and lymph node immune microenvironment [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(5): 451-452. |
[3] | School of Pharmaceutical Sciences, Peking University Health Science Center. The 4th International Conference on Nanomedicine was held [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(11): 939-940. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||