[1] Collins, P.Y.; Patel, V.; Joestl, S.S.; March, D.; Insel, T.R.; Daar, A.S. Grand challenges in global mental health. Nature. 2011, 475, 27-30.
[2] Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D.; McGrath, P.J.; Rosenbaum, J.F.; Sackeim, H.A.; Kupfer, D.J.; Luther, J.; Fava, M. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am. J. Psychiatry. 2006, 163, 1905-1917.
[3] Canuso, C.M.; Singh, J.B.; Fedgchin, M.; Alphs, L.; Lane, R.; Lim, P.; Pinter, C.; Hough, D.; Sanacora, G.; Manji, H.; Drevets, W.C. Efficacy and safety of intranasal esketamine for the rapid reduction of symptoms of depression and suicidality in patients at imminent risk for suicide: results of a double-blind, randomized, placebo-controlled study. Am. J. Psychiatry. 2018, 175, 620-630.
[4] Trivedi, M.H.; Rush, A.J.; Wisniewski, S.R.; Nierenberg, A.A.; Warden, D.; Ritz, L.; Norquist, G.; Howland, R.H.; Lebowitz, B.; McGrath, P.J.; Shores-Wilson, K.; Biggs, M.M.; Balasubramani, G.K.; Fava, M.; STAR|D Study Team. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am. J. Psychiatry. 2006, 163, 28-40.
[5] Zhou, Q.; Sheng, M. NMDA receptors in nervous system diseases. Neuropharmacology. 2013, 74, 69-75.
[6] Isaacson, J.S.; Murphy, G.J. Glutamate-mediated extrasynaptic inhibition: direct coupling of NMDA receptors to Ca(2+)-activated K+ channels. Neuron. 2001, 31, 1027-1034.
[7] Faber, E.S.; Delaney, A.J.; Sah, P. SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala. Nat. Neurosci. 2005, 8, 635-641.
[8] Yang, Y.; Cui, Y.H.; Sang, K.N.; Dong, Y.Y.; Ni, Z.Y.; Ma, S.S.; Hu, H.L. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018, 554, 317-322.
[9] Skolnick, P. Antidepressants for the new millennium. Eur. J. Pharmacol. 1999, 375, 31-40.
[10] Skolnick, P. Modulation of glutamate receptors: strategies for the development of novel antidepressants. Amino. Acids. 2002, 23, 153-159.
[11] Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry. 2000, 47, 351-354.
[12] Chaturvedi, H.K.; Chandra, D.; Bapna, J.S. Interaction between N-methyl-D-aspartate receptor antagonists and imipramine in shock-induced depression. Indian J. Exp. Biol. 1999, 37, 952-958.
[13] Feifel, D.; Malcolm, B.; Boggie, D.; Lee, K. Low-dose ketamine for treatment resistant depression in an academic clinical practice setting. J. Affect. Disord. 2017, 221, 283-288.
[14] Hashimoto, K. Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Res. Rev. 2009, 61, 105-123.
[15] Maeng, S.; Zarate, C.A. Jr, Du, J.; Schloesser, R.J.; McCammon, J.; Chen, G.; Manji, H.K. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol. Psychiatry. 2008, 63, 349-352.
[16] Tizabi, Y.; Bhatti, B.H.; Manaye, K.F.; Das, J.R.; Akinfiresoye, L. Antidepressant-like effects of low ketamine dose is associated with increased hippocampal AMPA/NMDA receptor density ratio in female Wistar-Kyoto rats. Neuroscience. 2012, 213, 72-80.
[17] Machado-Vieira, R.; Zanetti, M.V.; Teixeira, A.L.; Uno, M.; Valiengo, L.L.; Soeiro-de-Souza, M.G.; Oba-Shinjo, S.M.; de Sousa, R.T.; Zarate, C.A. Jr, Gattaz, W.F.; Marie, S.K. Decreased AKT1/mTOR pathway mRNA expression in short-term bipolar disorder. Eur. Neuropsychopharmacol. 2015, 25, 468-473.
[18] Zoncu, R.; Efeyan, A.; Sabatini, D.M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2011, 12, 21-35.
[19] Jernigan, C.S.; Goswami, D.B.; Austin, M.C.; Iyo, A.H.; Chandran, A.; Stockmeier, C.A.; Karolewicz, B. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog. Neuro - Psychopharmacol. Biol. Psychiatry. 2011, 35, 1774-1779.
[20] Li, N.X.; Lee, B.; Liu, R.J.; Banasr, M.; Dwyer, J.M.; Iwata, M.; Li, X.Y.; Aghajanian, G.; Duman, R.S. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010, 329, 959-964.
[21] Yang, C.; Zhou, Z.Q.; Gao, Z.Q.; Shi, J.Y.; Yang, J.J. Acute increases in plasma mammalian target of rapamycin, glycogen synthase kinase-3β, and eukaryotic elongation factor 2 phosphorylation after ketamine treatment in three depressed patients. Biol. Psychiatry. 2013, 73, e35-e36.
[22] Yu, J.J.; Zhang, Y.; Wang, Y.; Wen, Z.Y.; Liu, X.H.; Qin, J.; Yang, J.L. Inhibition of calcineurin in the prefrontal cortex induced depressive-like behavior through mTOR signaling pathway. Psychopharmacology. (Berl.) 2013, 225, 361-372.
[23] Lu, Y.; Wang, C.; Xue, Z.C.; Li, C.L.; Zhang, J.F.; Zhao, X.; Liu, A.M.; Wang, Q.W.; Zhou, W.H. PI3K/AKT/mTOR signaling-mediated neuropeptide VGF in the Hippocampus of mice is involved in the rapid onset antidepressant-like effects of GLYX-13. Int. J. Neuropsychopharmacol. 2014, 18, pyu110.
[24] Yang, C.; Hu, Y.M.; Zhou, Z.Q.; Zhang, G.F.; Yang, J.J. Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test. Ups. J. Med. Sci. 2013, 118, 3-8.
[25] Spencer, R.L.; Deak, T. A users guide to HPA Axis research. Physiol. Behav. 2017, 178, 43-65.
[26] Herman, J.P.; Cullinan, W.E. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical Axis. Trends Neurosci. 1997, 20, 78-84.
[27] Herman, J.P. Regulation of adrenocorticosteroid receptor mRNA expression in the central nervous system. Cell Mol. Neurobiol. 1993, 13, 349-372.
[28] Morris, M.C.; Compas, B.E.; Garber, J. Relations among posttraumatic stress disorder, comorbid major depression, and HPA function: a systematic review and meta-analysis. Clin. Psychol. Rev. 2012, 32, 301-315.
[29] MacHado-Vieira, R.; Soeiro-De-souza, M.G.; Richards, E.M.; Teixeira, A.L.; Zarate, C.A.Jr. Multiple levels of impaired neural plasticity and cellular resilience in bipolar disorder: Developing treatments using an integrated translational approach. World J. Biol. Psychiatry. 2014, 15, 84-95.
[30] Musazzi, L.; Treccani, G.; Mallei, A.; Popoli, M. The action of antidepressants on the glutamate system: regulation of glutamate release and glutamate receptors. Biol. Psychiatry. 2013, 73, 1180-1188.
[31] O‘Keane, V.; Frodl, T.; Dinan, T.G. A review of Atypical depression in relation to the course of depression and changes in HPA Axis organization. Psychoneuroendocrinology. 2012, 37, 1589-1599.
[32] Tringali, G.; Lisi, L.; De Simone, M.L.; Aubry, J.M.; Preziosi, P.; Pozzoli, G.; Navarra, P. Effects of olanzapine and quetiapine on corticotropin-releasing hormone release in the rat brain. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2009, 33, 1017-1021.
[33] Matsumoto, M.; Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature. 2007, 447, 1111-1115.
[34] Ji, H.; Shepard, P.D. Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABAA receptor-mediated mechanism. J. Neurosci. 2007, 27, 6923-6930.
[35] Shumake, J.; Edwards, E.; Gonzalez-Lima, F. Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior. Brain Res. 2003, 963, 274-281.
[36] Grace, A.A.; Floresco, S.B.; Goto, Y.; Lodge, D.J. Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 2007, 30, 220-227.
[37] Cui, Y.H.; Yang, Y.; Ni, Z.Y.; Dong, Y.Y.; Cai, G.H.; Foncelle, A.; Ma, S.S.; Sang, K.N.; Tang, S.Y.; Li, Y.Z.; Shen, Y.; Berry, H.; Wu, S.X.; Hu, H.L. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature. 2018, 554, 323-327.
[38] Sartorius, A.; Kiening, K.L.; Kirsch, P.; von Gall, C.C.; Haberkorn, U.; Unterberg, A.W.; Henn, F.A.; Meyer-Lindenberg, A. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol. Psychiatry. 2010, 67, e9-e11.
[39] Lochhead, J.J.; Thorne, R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 2012, 64, 614-628.
[40] Erdő, F.; Bors, L.A.; Farkas, D.; Bajza, Á.; Gizurarson, S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull. 2018, 143, 155-170.
[41] Crowe, T.P.; Greenlee, M.H.W.; Kanthasamy, A.G.; Hsu, W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018, 195, 44-52.
[42] Huge, V.; Lauchart, M.; Magerl, W.; Schelling, G.; Beyer, A.; Thieme, D.; Azad, S.C. Effects of low-dose intranasal (S)-ketamine in patients with neuropathic pain. Eur. J. Pain. 2010, 14, 387-394.
[43] Salvadore, G.; Singh, J.B. Ketamine as a fast acting antidepressant: current knowledge and open questions. CNS Neurosci. Ther. 2013, 19, 428-436.
[44] Zarate, C.A. Jr, Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; Charney, D.S.; Manji, H.K. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry. 2006, 63, 856-864.
[45] Murrough, J.W.; Perez, A.M.; Pillemer, S.; Stern, J.; Parides, M.K.; aan het Rot, M.; Collins, K.A.; Mathew, S.J.; Charney, D.S.; Iosifescu, D.V. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol. Psychiatry. 2013, 74, 250-256.
[46] Autry, A.E.; Adachi, M.; Nosyreva, E.; Na, E.S.; Los, M.F.; Cheng, P.F.; Kavalali, E.T.; Monteggia, L.M. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011, 475, 91-95.
[47] Mathew, S.J.; Shah, A.; Lapidus, K.; Clark, C.; Jarun, N.; Ostermeyer, B.; Murrough, J.W. Ketamine for treatment-resistant unipolar depression: current evidence. CNS Drugs. 2012, 26, 189-204.
[48] Lapidus, K.A.; Levitch, C.F.; Perez, A.M.; Brallier, J.W.; Parides, M.K.; Soleimani, L.; Feder, A.; Iosifescu, D.V.; Charney, D.S.; Murrough, J.W. A randomized controlled trial of intranasal ketamine in major depressive disorder. Biol. Psychiatry. 2014, 76, 970-976.
[49] Naidoo, V.; Mdanda, S.; Ntshangase, S.; Naicker, T.; Kruger, H.G.; Govender, T.; Naidoo, P.; Baijnath, S. Brain penetration of ketamine: Intranasal delivery VS parenteral routes of administraion. J. Psychiatr. Res. 2019, 112, 7-11.
[50] Kohrs, R.; Durieux, M.E. Ketamine: teaching an old drug new tricks. Anesth. Analg. 1998, 87, 1186-1193.
[51] Singh, J.B.; Fedgchin, M.; Daly, E.; Xi, L.W.; Melman, C.; De Bruecker, G.; Tadic, A.; Sienaert, P.; Wiegand, F.; Manji, H.; Drevets, W.C.; van Nueten, L. Intravenous esketamine in adult treatment-resistant depression: a double-blind, double-randomization, placebo-controlled study. Biol. Psychiatry. 2016, 80, 424-431.
[52] Ochs-Ross, R.; Daly, E.J.; Zhang, Y.; Lane, R.; Lim, P.; Morrison, R.L.; Hough, D.; Manji, H.; Drevets, W.C.; Sanacora, G.; Steffens, D.C.; Adler, C.; McShane, R.; Gaillard, R.; Wilkinson, S.T.; Singh, J.B. Efficacy and safety of esketamine nasal spray plus an oral antidepressant in elderly patients with treatment-resistant depression-TRANSFORM-3. Am. J. Geriatr. Psychiatry. 2020, 28, 121-141.
[53] Haque, S.; Md, S.; Fazil, M.; Kumar, M.; Sahni, J.K.; Ali, J.; Baboota, S. Venlafaxine loaded chitosan NPs for brain targeting: pharmacokinetic and pharmacodynamic evaluation. Carbohydr. Polym. 2012, 89, 72-79.
[54] Alam, M.I.; Baboota, S.; Ahuja, A.; Ali, M.; Ali, J.; Sahni, J.K.; Bhatnagar, A. Pharmacoscintigraphic evaluation of potential of lipid nanocarriers for nose-to-brain delivery of antidepressant drug. Int. J. Pharm. 2014, 470, 99-106.
[55] Nakao, Y.; Horiguchi, M.; Nakamura, R.; Sasaki-Hamada, S.; Ozawa, C.; Funane, T.; Ozawa, R.; Oka, J.I.; Yamashita, C. LARETH-25 and β-CD improve central transitivity and central pharmacological effect of the GLP-2 peptide. Int. J. Pharm. 2016, 515, 37-45.
[56] Sasaki-Hamada, S.; Nakamura, R.; Nakao, Y.; Akimoto, T.; Sanai,, Nagai, M.; Horiguchi, M.; Yamashita, C.; Oka, J.I. Antidepressant-like effects exerted by the intranasal administration of a glucagon-like peptide-2 derivative containing cell-penetrating peptides and a penetration-accelerating sequence in mice. Peptides. 2017, 87, 64-70.
[57] Paslakis, G.; Blum, W.F.; Deuschle, M. Intranasal insulin-like growth factor I (IGF-I) as a plausible future treatment of depression. Med. Hypotheses. 2012, 79, 222-225.
[58] Thorne, R.G.; Pronk, G.J.; Padmanabhan, V.; Frey, W.H. 2nd Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004, 127, 481-496.
[59] MacDonald, K.; MacDonald, T.M.; Brüne, M.; Lamb, K.; Wilson, M.P.; Golshan, S.; Feifel, D. Oxytocin and psychotherapy: a pilot study of its physiological, behavioral and subjective effects in males with depression. Psychoneuroendocrinology. 2013, 38, 2831-2843.
[60] Naidoo, V.; Mdanda, S.; Ntshangase, S.; Naicker, T.; Kruger, H.G.; Govender, T.; Naidoo, P.; Baijnath, S. Brain penetration of ketamine: Intranasal delivery VS parenteral routes of administraion. J. Psychiatr. Res. 2019, 112, 7-11. |