[1] Perkin, A.G. CXIII. -Some constituents of the root of Polygonum cuspidatum. J. Chem. Soc. Trans. 1895, 67, 1084-1090.
[2] Richard, T.; Pawlus, A.D.; Iglésias, M.L.; Pedrot, E.; Waffo-Teguo, P.; Mérillon, J.M.; Monti, J.P. Neuroprotective properties of resveratrol and derivatives. Ann. N. Y. Acad. Sci. 2011, 1215, 103-108.
[3] Siemann E.H.; Creasy L.L. Concentration of the phytoalexin resveratrol in wine. Am. J. Enol. Vitic. 1992, 43, 401-405.
[4] de la Lastra, C.A.; Villegas, I. Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol. Nutr. Food Res. 2005, 49, 405-430.
[5] Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997, 275, 218-220.
[6] Coggon, P.; McPhail, A.T.; Wallwork, S.C. Structure of hopeaphenol: X-ray analysis of the benzene solvate of dibromodeca-O-methylhopeaphenol. J. Chem. Soc. B. 1970, 884-897.
[7] Coggon, P.; King, T.J.; Wallwork, S.C., The structure of hopeaphenol. Chem. Communi. (London) 1966, 13, 439-440.
[8] Coggon, P.; Janes, N.F.; King, F.E.; King, T.J.; Molyneux, R.J.; Morgan, J.W.W.; Sellars, K. 61. Hopeaphenol, an extractive of the heartwood of Hopea odorata and Balanocarpus heimii. J. Chem. Soc. 1965, 406-409.
[9] Langcake, P.; Pryce, R.J. Oxidative dimerisation of 4-hydroxystilbenes in vitro: production of a grapevine phytoalexin mimic. J. Chem. Soc. Chem. Commun. 1977, 7, 208.
[10] Li, C.; Lu, J.; Xu, X.F.; Hu, R.L.; Pan, Y.J. PH-switched HRP-catalyzed dimerization of resveratrol: a selective biomimetic synthesis. Green Chem. 2012, 14, 3281.
[11] Wang, M.; Jin, Y.; Ho, C.T. Evaluation of resveratrol derivatives as potential antioxidants and identification of a reaction product of resveratrol and 2, 2-diphenyl-1-picryhydrazyl radical. J. Agric. Food Chem. 1999, 47, 3974-3977.
[12] Shang, Y.J.; Qian, Y.P.; Liu, X.D.; Dai, F.; Shang, X.L.; Jia, W.Q.; Liu, Q.; Fang, J.G.; Zhou, B. Radical-scavenging activity and mechanism of resveratrol-oriented analogues: influence of the solvent, radical, and substitution. J. Org. Chem. 2009, 74, 5025-5031.
[13] Takaya, Y.; Terashima, K.; Ito, J.; He, Y.H.; Tateoka, M.; Yamaguchi, N.; Niwa, M. Biomimic transformation of resveratrol. Tetrahedron. 2005, 61, 10285-10290.
[14] Fan, G.J.; Liu, X.D.; Qian, Y.P.; Shang, Y.J.; Li, X.Z.; Dai, F.; Fang, J.G.; Jin, X.L.; Zhou, B. 4,4'-Dihydroxy-trans-stilbene, a resveratrol analogue, exhibited enhanced antioxidant activity and cytotoxicity. Bioorg. Med. Chem. 2009, 17, 2360-2365.
[15] Sako, M.; Hosokawa, H.; Ito, T.; Iinuma, M. Regioselective oxidative coupling of 4-hydroxystilbenes: synthesis of resveratrol and epsilon-viniferin (E)-dehydrodimers. J. Org. Chem. 2004, 69, 2598-2600.
[16] Song, T.; Zhou, B.; Peng, G.W.; Zhang, Q.B.; Wu, L.Z.; Liu, Q.; Wang, Y. Aerobic oxidative coupling of resveratrol and its analogues by visible light using mesoporous graphitic carbon nitride (mpg-C(3)N(4)) as a bioinspired catalyst. Chemistry. 2014, 20, 678-682.
[17] Nicotra, S.; Cramarossa, M.R.; Mucci, A.; Pagnoni, U.M.; Riva, S.; Forti, L. Biotransformation of resveratrol: synthesis of trans-dehydrodimers catalyzed by laccases from Myceliophtora thermophyla and from Trametes pubescens. Tetrahedron. 2004, 60, 595-600.
[18] Ponzoni, C.; Beneventi, E.; Cramarossa, M.R.; Raimondi, S.; Trevisi, G.; Pagnoni, U.M.; Riva, S.; Forti, L. Laccase-catalyzed dimerization of hydroxystilbenes. Adv. Synth. Catal. 2007, 349, 1497-1506.
[19] Pezet, R. Purification and characterization of a 32-kDa laccase-like stilbene oxidase produced by Botrytis cinerea Pers.: Fr. FEMS Microbiol. Lett. 1998, 167, 203-208.
[20] Yao, C.S.; Lin, M.; Wang, Y.H. Synthesis of the active stilbenoids by photooxidation reaction of trans-ϵ-viniferin. Chin. J. Chem. 2010, 22, 1350-1355.
[21] Snyder, S.A.; Brill, Z.G. Structural revision and total synthesis of caraphenol B and C. Org. Lett. 2011, 13, 5524-5527.
[22] Snyder, S.A.; Gollner, A.; Chiriac, M.I. Regioselective reactions for programmable resveratrol oligomer synthesis. Nature. 2011, 474, 461-466.
[23] Snyder, S.A.; Thomas, S.B.; Mayer, A.C.; Breazzano, S.P. Total syntheses of hopeanol and hopeahainol A empowered by a chiral Brønsted acid induced pinacol rearrangement. Angew. Chem. Int. Ed. Engl. 2012, 51, 4080-4084.
[24] Snyder, S.A.; Wright, N.E.; Pflueger, J.J.; Breazzano, S.P. Total syntheses of heimiol A, hopeahainol D, and constrained analogues. Angew. Chem. Int. Ed. Engl. 2011, 50, 8629-8633.
[25] Snyder, S.A.; Zografos, A.L.; Lin, Y.Q. Total synthesis of resveratrol-based natural products: a chemoselective solution. Angew. Chem. Int. Ed. Engl. 2007, 46, 8186-8191.
[26] Liu, F.; Li, F.S.; Feng, Z.M.; Yang, Y.N.; Jiang, J.S.; Li, L.; Zhang, P.C. Neuroprotective naphthalene and flavan derivatives from Polygonum cuspidatum. Phytochemistry. 2015, 110, 150-159.
[27] Husain, S.M.; Schätzle, M.A.; Röhr, C.; Lüdeke, S.; Müller, M. Biomimetic asymmetric synthesis of (R)-GTRI-02 and (3S,4R)-3,4-dihydroxy-3,4-dihydronaphthalen-1(2H)-ones. Org. Lett. 2012, 14, 3600-3603.
[28] Lee, I.; Choe, Y.S.; Choi, J.Y.; Lee, K.H.; Kim, B.T. Synthesis and evaluation of 18F-labeled styryltriazole and resveratrol derivatives for β-amyloid plaque imaging. J. Med. Chem. 2012, 55, 883-892. |