[1] Du, W.W.; Fan, Y.C.; Zheng, N.; He, B.; Yuan, L.; Zhang, H.; Wang, X.Q.; Wang, J.C.; Zhang, X.; Zhang, Q. Transferrin Receptor Specific Nanocarriers Conjugated with Functional 7peptide for Oral Drug Delivery. Biomaterials. 2013, 34, 794-806.
[2] Barua, S.; Mitragotri, S. Challenges Associated with Penetration of Nanoparticles Across Cell and Tissue Barriers: A Review of Current Status and Future Prospects. Nano Today. 2014, 9, 223-243.
[3] Cone, R.A. Barrier Properties of Mucus. Adv. Drug Deliv. Rev. 2009, 61, 75-85.
[4] Des Rieux, A.; Fievez, V.; Garinot, M.; Schneider, Y.J.; Preat, V. Nanoparticles as Potential Oral Delivery Systems of Proteins and Vaccines: A Mechanistic Approach. J. Controlled Release. 2006, 116, 1-27.
[5] Gullberg, E.; Leonard, M.; Karlsson, J.; Hopkins, A.M.; Brayden, D.; Baird, A.W.; Artursson, P. Expression of Specific Markers and Particle Transport in A New Human Intestinal M-Cell Model. Biochem. Biophys. Res. Commun. 2000, 279, 808-813.
[6] Bouwmeester, H.; Poortman, J.; Peters, R.J.; Wijma, E.; Kramer, E.; Makama, S.; Puspitaninganindita, K.; Marvin, H.J.P.; Peijnenburg, A.A.C.M.; Hendriksen, P.J.M. Characterization of Translocation of Silver Nanoparticles and Effects on Whole-Genome Gene Expression Using an In Vitro Intestinal Epithelium Coculture Model. ACS Nano. 2011, 5, 4091-4103.
[7] Des Rieux, A.; Fievez, V.; Theate, I.; Mast, J.; Preat, V.; Schneider, Y.J. An Improved in vitro Model of Human Intestinal Follicle-Associated Epithelium to Study Nanoparticle Transport by M Cells. Eur. J. Pharm. Sci. 2007, 30, 380-391.
[8] Harris, E.S. Nelson, W.J. VE-Cadherin: At the Front, Center, and Sides of Endothelial Cell Organization and Function. Curr. Opin. Cell Biol. 2010, 22, 651-658.
[9] Kim, S.H.; Chi, M.; Yi, B.; Kim, S.H.; Oh, S.; Kim, Y.; Park, S.; Sung, J.H. Three-Dimensional Intestinal Villi Epithelium Enhances Protection of Human Intestinal Cells from Bacterial Infection by Inducing Mucin Expression. Integr. Biol-U.K. 2014, 6, 1122-1131.
[10] Wagner, R.D., Johnson, S.J. and Cerniglia, C.E. In vitro Model of Colonization Resistance by the Enteric Microbiota: Effects of Antimicrobial Agents Used in Food-Producing Animals. Antimicrob. Agents Chemother. 2008, 52, 1230-1237.
[11] Yu, J.J.; Peng, S.M. Luo, D.; March, J.C. In vitro 3D Human Small Intestinal Villous Model for Drug Permeability Determination. Biotechnol. Bioeng. 2012, 109, 2173-2178.
[12] He, B.; Jia, Z.R.; Du, W.W.; Yu, C.; Fan, Y.C.; Dai, W.B.; Yuan, L.; Zhang, H.; Wang, X.Q.; Wang, J.C.; Zhang, X.; Zhang, Q. The Transport Pathways Of Polymer Nanoparticles In MDCK Epithelial Cells. Biomaterials. 2013, 34, 4309-4326.
[13] Hilgendorf, C.; Spahn-Langguth, H.; Regardh, C.G.; Lipka, E.; Amidon, G.L.; Langguth, P. Caco-2 Versus Caco-2/HT29-MTX Co-Cultured Cell Lines: Permeabilities via Diffusion, Inside- and Outside-Directed Carrier-Mediated Transport. J. Pharm. Sci-US. 2000, 89, 63-75.
[14] Veiseh, O.; Tang, B.C.; Whitehead, K.A.; Anderson, D.G.; Langer, R. Managing Diabetes with Nanomedicine: Challenges and Opportunities. Nat. Rev. Drug Discov. 2015, 14, 45-57.
[15] Dgell, C.J.S.; Haizlip, J.E.; Bagnell, C.R.; Packenham, J.P.; Harrison, P.; Wilbourn, B.; Madden, V.J. Endothelium Specific Weibel-Palade Bodies In a Continuous Human Cell-Line, Ea.Hy926. In. Vitro Cell Dev. Biol. Anim. 1990, 26, 1167-1172.
[16] Edgell, C.J.; Mcdonald, C.C.; Graham, J.B. Permanent Cell-Line Expressing Human Factor-Viii-Related Antigen Established by Hybridization. P. Natl. Acad. Sci. U.S.A. 1983, 80, 3734-3737. |