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Bergenin, as a major bioactive ingredient of traditional Chinese medicine bergenia, can be found to be a significant 

component or a secondary metabolite in many families. Bergenin and its derivatives have aroused great interest because their 

unique bioactivities and pharmacological properties have been gradually disclosed over the past decades.  A great number 

of bergenin derivatives have been synthesized, and their biological activities have been surveyed to achieve many satisfactory 
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1. Introduction  

Medicinal plants are extremely diverse and inventive 

sources of lead molecules and are also estimated to 

develop various useful medicines via modern drug 

discovery techniques[1]. Over the past decades, copious 

efforts have been donated to investigate the significance 

of these bioactive products derived from natural 

sources in the field of medical science [2,3]. Natural 

herbal remedies have widely been accepted in the 

application of different human diseases because 

they show fewer side effects and lower toxicities 

as compared with traditional medicines. Indeed, in 

scaffold-based drug discovery, natural products with 

demonstrated therapeutic effects are of prime significance 

for the identification of lead compounds[4]. Bergenin (1) is 

a kind of polyphenolic, dihydro-isocoumarin compound 

fused β-C-glucoside of 4-O-methylgallic acid, whose 

molecular structure is made up of three six-membered 

rings with an aromatic glucopyranose and an annellated-

lactone (Scheme 1)[5]. As a major bioactive ingredient 

of traditional Chinese medicine bergenia, bergenin can 

be found to be an important component or a secondary 

metabolite in many families[6–8]. Herbs containing bergenin 

as a folk traditional medicine have been used in Asian 

countries, such as India and China, at least until the 

7th century ago[9,10]. Bergenin preparations have been 

utilized in the treatment of various diseases, including 

bronchitis and chronic gastritis, and gastric and duodenal 

ulcers in China. Bergenin and the related products 

in the clinical application have become clearer and 

ever-widening and made many valuable and significant 

contributions to human health[11–18].  

Bergenin has continuously attracted great attention as 

studies on its bioactivities and pharmacological properties 

have gradually been developed since the beginning of 

the 21st century. Recent studies have demonstrated that 

bergenin possesses lower side effects, minimal toxicities 

and numerous bioactivities, such as hepatoprotective[19–25], 

neuroprotective[26–31], anti-inflammatory[32–38], antioxidant[39–44], 

immunomodulatory[45–47], antidiabetic[48–52], anticancer[53–58], 

antiviral[59–61], antiemetic[62], antiplasmodial[63], antimalarial[64], 

antiangiogenic[65], antimicrobial[66], hyperuricemia[67–71], 

osteogenesis/bone regeneration[72–75], and as PPAR-γ 

agonist[76,77], etc. Molecular docking studies have 

indicated that the isocoumarin pharmacophore of 

bergenin is essential for its pharmacological properties. 

Recently, Costa et al. [78] have provided new insights 

into structural, electronic, reactivity, spectroscopic, 

and pharmacological properties of bergenin through 

experimental, DFT calculations, MD, and docking 

simulations. Jayakody et al.[79] have identified the 

potential biological targets of bergenin using reverse 

docking calculations, the results suggest that galectin-3 

is a potential target of bergenin.  

Cai, S.Q. et al. / J. Chin. Pharm. Sci. 2023, 32 (5), 333–350 

Scheme 1. Chemical structure and characteristics of bergenin.  
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Bergenin possesses great potential to be used as a 

precursor and a candidate for the development of more 

efficacious and safer semisynthetic derivatives. However, 

bergenin and its analogs only exhibit moderate or poor 

bioactivities in most cases. Therefore, its structural 

modifications or semisynthesis have always aroused 

great interest from medicinal scientists. Although 

Bajracharya et al.[80] have reviewed the diversity, 

pharmacology, and synthesis of bergenin and its 

derivatives in the early stages, Madaan et al.[81] have 

recently described the structure-activity relationships 

and nanotechnological perspectives in the utilization of 

bergenin as a biologically active scaffold. Various 

positive achievements in the field of anti-inflammatory, 

antiviral, antitumor, anti-platelet aggregation, antileishmanial 

and antitrypanosomal, antiparasitic, immunosuppressive, 

tyrosinase inhibitory, and other activities have been made 

over the past several years. These studies are helpful in 

exploring more potent candidates or therapeutic agents 

and further understanding their molecular targets and 

pharmacological mechanisms. This work compiled 

scattered information on semisynthetic derivatives of 

bergenin and highlighted recent advances in bioactive 

modifications. 

2. Total synthesis of bergenin 

The reports on the total synthesis of bergenin are 

fewer, and the possible causes are related to its rich 

source and low price. In view of the total synthesis 

of bergenin-related natural products, Schmidt and 

coworkers[82] have reported a 10-step synthesis of 

8,10-di-O-methylbergenin (tri-O-methylnorbergenin) 

in 5.2% total yield by employing perbenzylated and 

trifluoroacetyl glucose as major substrates in 1991. 

The preparation of tri-O-methylnorbergenin was carried 

out via the pathway of IDCP-mediated intramolecular 

C-glycosylation reaction[83]. Later, Seeberger and 

coworkers[84] have developed a simple and efficient approach 

for the five-step synthesis of tri-O-methylnorbergenin. 

In 2012, Sakamaki et al.[85] have reported an efficient 

approach for the synthesis of aryl β-C-glucoside 

through a key intermediate glucal boronate (2), which 

was successfully applied to the preparation of tri-O-

methylnorbergenin (Scheme 2). Based on the application 

of intermediate 2, Parkan and coworkers[86] have 

reported the first total synthesis of bergenin through 

six-step reactions from compound 2 with an overall 

yield of 40% (Scheme 3).  

Cai, S.Q. et al. / J. Chin. Pharm. Sci. 2023, 32 (5), 333–350 

Scheme 2. Synthesis of tri-O-methylnorbergenin via the pathway of aryl-α-C-glucosidation.  
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3. Bioactive modifications of bergenin 

Bergenin is a kind of compound with poly-hydroxyl 

groups, whose chemical structure possesses five 

active hydroxyl groups, including two phenolic and 

three alcoholic hydroxyl groups (one primary and two 

secondary). Therefore, the semisynthesis of bergenin 

mainly appears in the derivatization of hydroxyl 

groups of bergenin by etherification or esterification in 

recent years. 

3.1. Etherification of hydroxyl groups 

3.1.1. Etherification of the phenolic hydroxyl group 

3.1.1.1. Double etherification of the phenolic hydroxyl 

group 

In 2012, Shah and coworkers[87] have synthesized 

15 of 8,10-dialkylation derivatives of bergenin and 

investigated their potent activities as inflammatory 

mediators of NO and TNF-α (Scheme 4). Compounds 

4d, 4e, and 4o displayed significant NO inhibitory 

activities with the inhibition rate of 54.5%, 47.5%, and 

86.8% at the concentration of 60 μmol/L, respectively 

(Table 1). Furthermore, compounds 4d and 4o had 

a promising inhibition effect against TNF-α with 

an inhibition rate of 98.6% and 96.2%, respectively. 

The evaluation of anti-inflammatory activities has 

confirmed that compounds 4h, 4m, and 4o showed 

stronger anti-inflammatory activities compared with the 

parent bergenin (IC50 = 303.12 μmol/L) and positive 

control indomethacin (IC50 = 271.21 μmol/L), with 

IC50 values of 212, 222, and 253 μmol/L, respectively. 

Unfortunately, all these compounds did not exhibit 

cytotoxic activity against 3T3 cells at concentrations 

up to 100 μmol/L. 

Cai, S.Q. et al. / J. Chin. Pharm. Sci. 2023, 32 (5), 333–350 

Scheme 3. Synthesis of bergenin via the cross-coupling of saccharide-based alkenyl boronic acids with aryl halides.  

Scheme 4. Bergenin derivatives for anti-inflammatory activities.  
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Later, Ye and coworkers[88] have investigated the 

antitumor activities of 4g (8,10-di-n-heptyl bergenin) 

by the CCK-8 method and studied the anti-leukemia 

activities and mechanisms. The results demonstrate that 

bergenin derivative 4g displays obvious anti-leukemia 

activities by inducing cell apoptosis with the reduction 

of mitochondrial membrane and activation of the 

caspase pathway. In 2020, David and coworkers[89] have 

prepared the derivatives 8,10-dialkylbergenins by the 

alkylation of bergenin and evaluated their cytotoxicity 

against Artemia salina (Scheme 5). Most derivatives of 

bergenin show moderate cytotoxicity against Artemia 

salina except 8,10-dihexyl-bergenin. Moreover, all 

the derivatives selectively inhibit the Gram-positive 

bacteria Staphylococcus aureus, and compounds 5c 

(8,10-dihexyl-bergenin) and 5e (8,10-didecyl-bergenin) 

displayed promising activities with minimum inhibitory 

concentration (MIC = 5.1, 6.2 μmol/L). In addition, 

semisynthetic derivatives of bergenin also exhibited 

moderate inhibition on acetylcholinesterase with 

IC50 = 141.19 μmol/L. These results indicate that the 

alkylative modification of bergenin greatly improves 

antibacterial activity. 

3.1.1.2. Single etherification of the phenolic hydroxyl 

group 

In 2015, Qu et al.[90] have designed and synthesized a 

series of substituted derivatives at the eighth position 

of bergenin with good operability and reaction yields 

using easily available natural products as the starting 

substrate (Scheme 6). All these derivatives show obvious  

Cai, S.Q. et al. / J. Chin. Pharm. Sci. 2023, 32 (5), 333–350 

Compound R IC50 (μmol/L) Inhibition NO (%, 60 μmol/L) Inhibition TNF-α (%, 60 μmol/L) 

4a (CH3)2CH2 303.12 –5.5 –8.44 

4b CH2=CH(CH2)2 288.02 3.6 –13.27 

4c CH3(CH2)3CH2- 295.72 3.4 20.90 

4d CH3CH2- 322.09 54.5 98.60 

4e CH3- Inactive 47.6 0.44 

4f CH≡C–CH2- 381.58 19.4 –27.56 

4g CH3(CH2)5CH2- 212.95 18.0 28.73 

4h CH2=CH(CH2)3CH2- 269.99 9.4 17.68 

4i CH2=CHCH2- 333.21 5.5 –18.41 

4j N≡C–CH2- 415.65 13.3 –26.21 

4k CH3(CH2)2CH2- 402.93 31.2 26.29 

4l (CH3)3COCOCH2- 482.23 16.3 9.60 

4m CH3(CH2)6CH2- 222.32 18.0 –3.40 

4n CH3CH2CH2- Inactive 8.9 –5.57 

4o C2H5OCOCH2- 253.23 86.8 96.22 

1 H (Bergenin) 303.12 4.3 –7.91 

Control Methyl L-arginine acetate NG 271.21* (indomethacin) 40.0 -- 

Scheme 5. Bergenin derivatives for their cytotoxicity against Artemia salina.  

Table 1. Bergenin derivatives as inflammatory mediators NO and TNF-α.  
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anti-platelet aggregation activity with an IC50 value of 

5.61–61.95 μmol/L, and their activities were significantly 

higher compared with the raw material bergenin 

(IC50 = 121 μmol/L) and the positive contrast drug aspirin 

(IC50 ≥ 100.0 μmol/L). When the 8-substituent contains 

two of the heterocyclic nitrogen atoms of piperazine 

fragment, such as the compounds 6c (n = 2–5), it 

displayed stronger anti-platelet aggregation activity 

(IC50 = 5.61–15.28 μmol/L) than the other compounds. 

It can be preliminarily concluded that the introduction 

of a piperazine fragment can greatly improve the 

anti-platelet aggregation activity of bergenin. However, 

it has been found that p-bromophenylthio, p-tolylthio, 

p-bromophenoxy, and p-tolyloxy are introduced into 

the eighth position of the structure of bergenin, and 

their activities are only slightly enhanced based on the 

IC50 value of the compounds. These results indicate 

the bergenin derivatives provide a prospect to develop 

novel anti-platelet aggregation medicines in the treatment 

of cardio-cerebrovascular diseases.  

Kumara et al.[91] have synthesized a series of bergenin-

triazole hybrids and investigated their cytotoxic 

potentials against DU-145, A549, HCT 116, HepG2, 

and HeLa cell lines in vitro (Scheme 7). Among these 

derivatives, compound 8j demonstrated significant 

activity against A-549 and HeLa cell lines with IC50 

values of 1.86 and 1.33 μmol/L, respectively (Table 2), 

which was similar to that of doxorubicin. Analysis from 

the cell cycle discloses that 8j arrests HeLa cells at the 

G2/M phase and induces accumulation of Cyclin B1 

protein. The studies based on tubulin polymerization 

assays and docking cells indicate that 8j occupies 

the colchicine binding pocket of tubulin and disrupts 

tubulin assembly.  

Cai, S.Q. et al. / J. Chin. Pharm. Sci. 2023, 32 (5), 333–350 

Scheme 6. Substituted compounds at the eighth position with anti-platelet aggregation activity.  

Scheme 7. Bergenin-triazole hybrids and their potentials against A-549 and HeLa cell lines.  
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3.1.2. Etherification of the alcoholic hydroxyl group  

In 2014, five new derivatives of bergenin have been 

synthesized through selective etherification (9a, 9b, and 

10a, 10b) and oxidation of bergenin (11) (Scheme 8)[92], 

and their antitumor activity against Hela cell lines 

in vitro is evaluated via MTT method. All compounds 

were found to exhibit general activity toward HeLa cells. 

At the concentration of 40 μg/mL, their inhibitory 

rate toward the growth of Hela cells is 24.45%, 20.13%, 

43.82%, 33.32%, and 39.34%, respectively, and the 

activities were poor and apparently lower than that of 

positive control 5-FU (53.32%).  

In 2021, a series of bergenin derivatives (12–14) have 

been prepared and evaluated for their immunosuppressive 

activities by the CCK-8 assay (Scheme 9)[93]. Compounds 

13a and 13d show the most potent immunosuppressive 

inhibition on mouse splenocyte proliferation with IC50 

values of 3.52 and 5.39 μmol/L, and inhibitory rates of 

91.44% and 84.86%, respectively. The activities were 

equivalent to positive control cyclosporin A (1 μmol/L, 

93.5% inhibitory rate) and betamethasone (10 μmol/L, 

89.6% inhibitory rate). Further studies disclose that the 

inhibitory effect can derive from the suppression of 

both IFN-γ and IL-4 cytokines. The structure-activity 

relationship demonstrates that the etherification of two 

phenolic hydroxyl groups of bergenin with n-hexyl and 

n-heptyl and the ability to form hydrogen bonds of the 

substituents on the C-4 position are significant against 

the immunosuppressive inhibitory activity. The results 

also indicate that compounds 13a and 13d may serve 

as potent precursors for the development of novel 

immunosuppressive agents.  

Cai, S.Q. et al. / J. Chin. Pharm. Sci. 2023, 32 (5), 333–350 

Compound 
DU-145 

IC50 (μmol/L) 
A549 

IC50 (μmol/L) 
HCT 116 

IC50 (μmol/L) 
HepG2 

IC50 (μmol/L) 
HeLa 

IC50 (μmol/L) 

Bergenin 54.43 34.29 44.12 60.91 22.00 
Doxorubicin 1.260 1.976 0.873 1.704 1.330 

8a–8m 13.94–80.83 1.86–23.30 11.22–112.12 10.39–38.83 4.70–21.25 

Table 2. IC50 values for compounds against DU-145, A549, HCT 116, HepG2, and HeLa cell lines.  

Scheme 8. Bergenin derivatives for their cytotoxicity against Hela cell lines.  
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3.2. Acylation of the alcoholic hydroxyl group 

3.2.1. Acylation of three alcoholic hydroxyl group 

In 2011, Jung et al.[94] have synthesized bergenin 

derivatives by acylation of bergenin and investigated 

their anti-inflammatory activity in cultured cells and 

anti-narcotic effects (Scheme 10). All the derivatives 

display potent suppression of LPS and induced NO 

generation at concentrations ranging from 20 to 30 μmol/L 

in vitro and appear to have significant anti-narcotic 

effects on morphine dependence in mice. These results 

are potentially helpful in exploring more potent 

anti-inflammatory and anti-narcotic compounds by the 

acylation of the alcoholic hydroxyl group of bergenin.  

In 2014, a series of 3-, 4-, and/or 11-trihydroxy-modified 

bergenin derivatives from 8,10-diBn-bergenin have been 

synthesized, and their cytotoxic activity against DU-145 

and BGC-823 cells in vitro has been investigated by MTT 

assay (Scheme 11)[95]. Triply-substituted 15a (R1 = R2 = 

R3 = Et), 15b (R1 = R2 = R3 = n-Pr), 15c (R1 = R2 = R3 = 

i-Pr), 15e (R1 = R2 = R3 = n-Bu), 15f (R1 = R2 = R3 = i-Bu) 

and doubly- substituted 15g (R1 = R2 = (n-Pr)2CH, R3 = H), 

15h (R1 = R2 = Ph, R3= H) bergenin derivatives displayed 

stronger cytotoxic activity than their parent bergenin. 

The results also confirm that the cytotoxic activity has 

a close relationship with the size of substituents and 

the lipophilicity of the bergenin esters. For example, 

compounds 15f, 15i (R1 = R2 = i-Bn, R3= H), 15j (R1 = 

R2 = R3 = (n-Pr)2CH), 15g, and 15h displayed more potent 

effects against DU-145 with IC50 values of 20.89, 35.48, 

30.90, 23.98, and 27.54 μmol/L, respectively, while 

compounds 15b, 15k (R1 = R2 = n-Pr, R3= H), 15c, 

15d, and 15l (R1 = R2 = n-Bn, R3= H) displayed higher 

activity against BGC-823 with IC50 values of 25.70, 

29.51, 23.99, 25.70, and 29.51 μmol/L, respectively.  

3.2.2. Selective monoesterification of the primary 

hydroxyl 

Kashima and Miyazawa[96] have designed a series of 

bergenin derivatives by the esterification of the primary 

hydroxyl and investigated the antioxidative activities 

against peroxyl radicals (Scheme 12). The results indicate 

that the derivatives and bergenin show more activity 

than the reference antioxidants, and the order is bergenin 

derivatives > Trolox > BHT. Compound 16d with catechol 

moiety displays the most antioxidant activity (3.75 μmol 

of Trolox equiv. per μmol of 53.75, IC50 = 17.5 μmol/L). 

Moreover, most of the compounds still show inhibition 

of tyrosinase activity. Compounds 16d and 16f exhibit 

the most potent inhibition of mushroom tyrosinase 

(IC50 = 17.5 and 79.8 μmol/L, respectively) and potent  

tyrosinase inhibitory effect with IC50 value of 17.5 μmol/L 

as compared to positive control arbutin (IC50 = 217 μmol/L) 

and kojic acid (IC50 = 46.6 μmol/L). These results   

Cai, S.Q. et al. / J. Chin. Pharm. Sci. 2023, 32 (5), 333–350 

Scheme 9. Bergenin derivatives and their immunosuppressive activities.  
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demonstrate that the tyrosinase inhibitory activity is 

affected by the benzoic acid moiety of bergenin and 

provides a good foundation for the design of novel 

tyrosinase inhibitors. 

In 2017, 14 derivatives of 8,10-diBn-bergenin/cinnamic 

acid hybrids have been synthesized, and their antitumor 

activities against PC-3, A549, SGC-7901, MCF-7, and 

HepG2 cell lines in vitro and in vivo were evaluated 

(Scheme 13)[97]. The most potent compound 17a (R1 = H, 

R2 = CN, R3 = H) has similar activities with the positive 

control 5-FU in vitro and exhibits moderate antitumor 

activity with low toxicity by suppressing the tumor 

growth in Heps xenograft-bearing mice (Table 3). 

Mechanistic studies indicate that compound 17a arrests 

HepG2 cells with IC50 values of 4.23 μmol/L in the G2/M 

phase and induces mitochondria-mediated apoptosis. 

Compound 17a significantly activates the downstream 

mitochondrial p53 translocation and is accompanied by 

an increase in the caspase-9 and caspase-3 activation. 

Compound 17a inhibits the expressions of Akt and 

Bcl-2 family proteins in a dose- and time-dependent 

manner. These results indicate that compound 17a may 

act as a novel Akt/Bcl-2 signaling pathway inhibitor 

for further preclinical evaluation. 

Recently, El-Hawary et al.[98] have synthesized eight 

ester derivatives (18a–18d and 19a–19d) of bergenin 

employing bergenin and 11-O-(4'-O-methylgalloyl)-

bergenin as starting materials, and their antileishmanial 

and antitrypanosomal activities were investigated 

(Scheme 14). Compared with the positive control 

difluoromethylornithine (DFMO) with IC50 values of 

21.7 μmol/L, Compounds 19c and 19d exhibit more 

potent antitrypanosomal activity against T. brucei with 

IC50 values of 0.52 and 0.5 μmol/L, respectively, while 

all the compounds do not show the activity against 

Leishmania parasites. 

Cai, S.Q. et al. / J. Chin. Pharm. Sci. 2023, 32 (5), 333–350 

Scheme 10. Bergenin derivatives for their anti-inflammatory and anti-narcotic effects.  

Scheme 11. Cytotoxic activity of bergenin derivatives against DU-145 and BGC-823 cells.  

Scheme 12. Antioxidative activities for esterification derivatives of bergenin.  
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Cai, S.Q. et al. / J. Chin. Pharm. Sci. 2023, 32 (5), 333–350 

Compound entry (R1, R2, R3) 
IC50 (μmol/L) 

PC-3 A549 SGC-7901 MCF-7 HepG2 

17a (H, H, H) 13.46 56.89 9.67 > 100.00 18.46 
17b (OMe, OMe, OMe) 12.06 5.46 7.53 11.69 6.62 
17c (H, CN, H) 26.96 10.66 8.32 7.34 5.23 
17d (MeO, H, MeO) 26.32 12.35 27.82 6.25 16.83 
17e (H, MeO, H) > 100.00 26.38 15.86 18.65 29.71 
17f (H, Me, H) 30.15 10.32 11.38 20.22 > 100.00 
17g (Me, Me, H) > 100.00 > 100.00 > 100.00 59.54 > 100.00 
17h (Cl, Cl, H) > 100.00 63.24 > 100.00 > 100.00 > 100.00 
17i (H, Cl, H) 86.52 > 100.00 > 100.00 > 100.00 > 100.00 
17j (H, F, H) 22.87 > 100.00 > 100.00 35.75 17.15 
17k (F, H, F) 46.24 28.36 > 100.00 72.13 > 100.00 
17l (MeO, MeO, H) > 100.00 > 100.00 58.94 > 100.00 86.13 
17m (H, NO2, H) > 100.00 > 100.00 > 100.00 > 100.00 > 100.00 
17n (NO2, H, NO2) > 100.00 > 100.00 > 100.00 > 100.00 > 100.00 
Bergenin > 100.00 77.28 23.56 > 100.00 34.56 
5-FU 38.61 10.65 13.25 7.67 17.44 

Table 3. Antiproliferative activity of compounds against PC-3, SGC-7901, A549, MCF-7, and HepG2 cell lines in vitro.  

Scheme 13. Esterification derivatives of bergenin for antitumor activities against PC-3, A549, SGC-7901, MCF-7, and HepG2 cell lines.  

Scheme 14. Antitrypanosomal activity of semisynthetic bergenin derivatives.  
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3.3. Amination of the primary hydroxyl 

A number of derivatives containing nitrogen moieties 

have been synthesized by the modifications primary 

alcoholic hydroxyl group of bergenin, and their cytotoxic 

activities against human cancer cell lines K562 and HL60 

are evaluated by in vitro MTT assay (Scheme 15)[99]. 

All the tested derivatives induced by the nitrogen 

moieties display stronger activities against two cell lines 

with the IC50 values of 2.23–8.65 and 2.32–8.55 μmol/L 

compared with DDP (IC50 = 6.35, 12.70 μmol/L). 

Compound 20l shows the most potent activity against 

K562 and HL60 with IC50 values of 1.5 and 2.3 μg/mL. 

Therefore, the studies based on the structure-activity 

relationship offer preliminary pointers to further 

investigate the utility of these molecules as potential 

therapeutic agents.  

In 2016, eight aza-bergenin derivatives (21a–21d 

and 22a–22d) have been synthesized through the 

Mannich reaction at the seventh position and Mitsunobu 

reaction at the eleventh position of the hydroxyl group, 

and their antitumor activities against human tumor 

cell line A549 in vitro are investigated by MTT assay 

(Scheme 16)[100]. The compounds 22c and 22d are the 

most potent compounds against A549 with IC50 = 3.74 

and 5.05 μmol/L, respectively, and their activity is higher 

than that of the positive control DDP (IC50 = 3.74 μmol/L). 

Compounds 22c and 22d show more potential than that 

of parent bergenin, indicating that they can be used as 

lead compounds for further research.  

Cai, S.Q. et al. / J. Chin. Pharm. Sci. 2023, 32 (5), 333–350 

Scheme 15. The activity of bergenin derivatives containing nitrogen moieties against K562 and HL60 cell lines. 

Scheme 16. The activity of aza-bergenin derivative against A549 cell line.  
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4. Conclusions 

Bergenin, as a cheap and easily available natural 

product, has aroused great attention in view of its 

extensive bioactivities, therapeutic effects, and low 

toxicity in the past several decades. Bergenin possesses 

more positions to decorate, good water solubility, and 

favorable safety. Therefore, it is regarded as a versatile 

precursor. However, bergenin and its analogs only 

display moderate to poor pharmacological properties, 

limiting their applications in a way. Up to now, the 

structural modifications of bergenin are still fewer and 

mainly focus on the etherification of phenolic hydroxyl 

and acylation or etherification of the alcoholic hydroxyl 

group. Although these studies provide a few valuable 

bioactive precursors containing anti-inflammatory, 

antitumor, anti-platelet aggregation, antileishmanial and 

antitrypanosomal, antiparasitic, immunosuppressive, 

tyrosinase inhibitory effects and helped us to understand 

their mechanism, the development of novel modification 

strategies is still interesting and necessary. For example, 

(i) the design of new derivatives should not be limited 

to the changes of the active hydroxyl group, and the 

introduction of a new group to the seventh position 

of bergenin will be a correct strategy through the 

Mannich reaction; (ii) The activation of the hydroxyl 

group at the eleventh position to react with phenols 

to introduce the aromatic group will be profitable; 

(iii) According to the requirement of bioactivity,  

the water- or lipo-solubility of the molecules should 

be increased. In addition, more attention to structural 

modifications of bergenin should be paid to investigate new 

bioactivities of the derivatives, such as neuroprotective 

and cardio-protective, hypoglycemic, liver protective 

agents, etc. We believe that the applied studies based 

on the semisynthesis of bergenin are an exciting topic, 

and the development of novel bergenin derivatives 

to investigate their pharmacological effects is still 

particularly worth pursuing in the future. 
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岩白菜素: 一种通用易得的生物活性修饰前体  

蔡粟茜1, 张可锋1*, 蔡小华2* 

1. 桂林医学院 药学院, 广西 桂林 541199 

2. 贵州民族大学 化学工程学院, 贵州 贵阳 550025                  

摘要: 岩白菜素是中药岩白菜的主要生物活性成分和许多植物家族的重要成分或次级代谢产物, 岩白菜素及其衍生物

因其独特的生物活性和药理性质引起了人们的极大兴趣。在过去的几十年中, 大量岩白菜素衍生物合成出来并考察其生

物活性, 取得了许多积极的结果。这些研究有助于从岩白菜素衍生物中发现和鉴定新的候选药物治疗剂, 了解它们的分子

靶点和药理作用机制。本工作总结了岩白菜素半合成衍生物的零散信息及在生物活性修饰方面的最新进展。                                    

关键词: 岩白菜素; 岩白菜素衍生物; 天然活性成分; 多功能前体; 结构修饰  
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