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Abstract: As a powerful tool for target prediction, reverse docking remains largely unexplored. The objective evaluation of reverse 

docking software can help us know better about the strength and weakness of these tools, hence guiding us in target prediction. 

In the present study, we evaluated the target prediction power of Glide (SP) against general inhibitors and selective inhibitors. 

The results showed that the scoring tendency could be different for each ligand, and overall scoring sampling was necessary for a 

better understanding of the docking score for a certain protein-ligand pair. Besides, the input conformation of the binding pocket 

could affect the docking result. Glide (SP) showed a preferable performance on the target prediction of the general inhibitors. 

However, the accuracy of the target prediction of the selective inhibitors was relatively low, indicating that Glide (SP) might not be 

capable for this task. The case study about COVID-19 proved that coagulation factor Xa might be a potential target of chloroquine. 

Therefore, we recommend the further development of reverse docking tools and rectification of inter-target scoring bias.                           
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1. Introduction  

Reverse docking, also known as inverse docking, 

is a vital aspect in computational target prediction. 

By using 3D structural information, reverse docking 

can predict targets with binding mode and approximate 

binding free energy, providing a convenient way to 

explore potential mechanism of action of a small 

molecule[1,2]. Many reverse docking tools have been 

successfully used in target prediction. For example, 

Lim et al.[3] have found cyclin-dependent kinase 2 as  

 

 

 

 

 

 

 

 

a new target of curcumin by using DOCK6, which is 

then confirmed by in vitro and ex vivo kinase assay. 

Similarly, Wang et al.[4] have found several potential 

protein targets of glabridin using reverse docking, 

and the selective binding is then verified by in vitro 

pull-down assay. 

With the rapid expansion of reverse docking tools, 

there is an urgent need to evaluate the target prediction 

power of docking software. Lapillo et al.[5] have reported 

the first extensive reliability evaluation work of reverse 

docking software with a new dataset consist of 60 

targets and 600 ligands. By analyzing the docking score 

given by different tools, the authors have summarized 

docking software with better target prediction power and 

factors that may make an impact on reverse docking. 

However, except for the global success rate of target 

prediction, whether reverse docking can distinguish the 

true target for the selective inhibitors remains a major  

concern. For example, if a ligand is a selective inhibitor of  
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protein A, can a docking software discriminate protein B 

during target prediction while protein A and B are of 

the same protein class?  

To the best of our knowledge, there is still no existing 

work which has reported the target prediction power of 

Glide[6,7], a classical docking software, on subtypes of 

protein. We used a well-established benchmark dataset 

for evaluation and PDBbind refined set for overall 

scoring sampling. Moreover, we analyzed the factors 

that might be relevant to the target prediction power. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the present work, we aimed to answer the 

questions as follows: 1) How Glide performed for 

the target prediction of general and selective inhibitors; 

2) Was the feature of ligand relevant to the docking 

score; 3) Would conformations of the protein influence 

the docking score? 

2. Materials and methods 

2.1. Evaluation of datasets 

The selectivity data set proposed by Karen et al.[8] 

was used as the benchmark dataset for the evaluation of 

the target prediction power among protein subtypes. 

This dataset was composed of three target classes, 

namely phosphodiesterases, histone deacetylases and 

serine proteases. Proteins in the benchmark dataset were 

shown in Table 1. For each protein, two or three 

structures were used as input file to account for 

protein conformation changes. As query ligands for 

the proteins, 17 selective or general inhibitors were used, 

which were shown in Table 2.  

Protein PDB codes of protein structures 

Phosphodiesterases   

    PDE4 2QYN, 2QYK, 3TVX 

    PDE5 3HC8, 3SHY, 3TGE 

Histone Deacetylases   

    HDAC2 (class I) 3MAX, 4LY1 

    HDAC8 (class I) 1T67, 1W22, 3SFF 

    HDAC4 (class II) 2VGJ, 4CBY 

Serine Proteases   

    Trypsin 2G5N, 2G8T, 3GY2 

    Thrombin 2BVR, 3RM2, 3SI4 

    Factor Xa 2JKH, 2Y5F, 3KL6 

Table 1. Proteins in the benchmark dataset and the PDB codes of the 

protein input file.  

Table 2. General and selective inhibitors in the benchmark dataset.  

Protein 
General inhibitors 

(DrugBank ID or PubChem ID) 

Selective inhibitors 

(DrugBank ID or PubChem ID) 

Phosphodiesterases     

PDE4 Caffeine (DB00201) 

Paraxanthine (CID 4687) 

Theophylline (DB00277) 

Piclamilast (DB01791) 

Drotaverine (DB06751) 

Roflumilast (DB01656) 

PDE5 Avanafil (DB06237) 

Sildenafil (DB00203) 

Tadalafil (DB00820) 

Histone Deacetylases     

HDAC2 (class I) Vorinostat (DB02546) 

Trichostatin A (CID 444732) 

Mocetinostat (CID 9865515) 

HDAC8 (class I) 

HDAC4 (class II)   

Serine Proteases     

Trypsin Benzamidine (DB03127) 

Pefabloc (DB07347) 

  

Thrombin Melagatran (CID 183797) 

Factor Xa Apixaban (DB06605) 

Rivaroxaban (DB06228) 
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For the investigation of the general scoring tendency 

of each ligand, proteins in the PDBbind refined set[9] 

were used for the overall scoring sampling, which 

included 4854 structures. 

2.2. Structure preparation 

The protein structures of the targets in the benchmark 

dataset were downloaded from PDB database[10], while 

the ligand structures were downloaded from Drug Bank[11] 

or Pubchem[12]. The structure files in the PDBbind refined 

set were downloaded from the official website. 

The ligand files were prepared by LigPrep, and the 

protein files were prepared using the Protein Preparation 

Wizard included in the Schrödinger Suite by adding 

hydrogens, deleting waters, assigning bond orders and 

determining protonation states[13]. The coordinate of the 

pocket was determined by the co-crystallized ligand of 

each protein. 

2.3. Molecular descriptors 

To characterize the feature of the ligands, five 

physicochemical properties were calculated using 

BIOVIA pipeline pilot components including molecular 

weight, AlogP, number of H-bond acceptors, number 

of H-bond donors and number of rotatable bonds. 

2.4. Molecular docking 

The standard precision (SP) docking modes was 

employed in our evaluation. The OPLS3 force field[14] 

and the default values of all docking parameters were 

used for docking. The docking score, which included 

Epik state penalties in the scoring, was used for data 

analysis and only the best score of each pair of protein 

and ligand was kept for data analysis. 

3. Results and discussion 

3.1. Physicochemical property analysis 

In this study, 17 inhibitors were used for the evaluation 

of the reverse docking tools. We computed ALogP, 

molecular weight, number of H-bond acceptors, number 

of H-bond donors and number of rotatable bonds of 

the inhibitors (Table 3). It could be found that all 

these ligands complied with Lipinski’s rules of five[15] 

Inhibitors 

(DrugBank ID or PubChem ID) 
ALogP Molecular weight Number of H-bond acceptors Number of H-bond donors Number of rotatable bonds 

DB00201 –0.100 194.2 3 0 0 

CID 4687 –0.306 180.2 3 1 0 

DB00277 –0.306 180.2 3 1 0 

DB01791 4.162 381.3 4 1 5 

DB06751 4.455 397.5 5 1 9 

DB01656 4.402 403.2 4 1 7 

DB06237 2.165 484.0 9 3 9 

DB00203 2.247 474.6 7 1 7 

DB00820 2.183 389.4 4 1 1 

DB02546 2.005 264.3 3 3 8 

CID 444732 2.772 302.4 4 2 6 

DB03127 0.783 121.2 0 2 1 

DB07347 0.879 203.2 3 1 3 

CID 9865515 2.798 396.4 6 3 6 

CID 183797 –2.133 429.5 6 5 9 

DB06605 2.865 459.5 5 1 5 

DB06228 1.797 435.9 5 1 5 

Table 3. Physicochemical properties of the inhibitors in the benchmark dataset.  
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(ALogP ≤ 5, Molecular Weight ≤ 500, Number of H-bond 

Acceptors ≤ 10, Number of H-bond Donors ≤ 5, Number 

of Rotatable Bonds ≤ 10), indicating that their physico-

chemical properties were proper for the evaluation 

since reverse docking was always applied to drug-like 

molecules. 

3.2. Overall scoring sampling 

As mentioned before, we used PDBbind refined set 

as the protein structure database for the overall scoring 

sampling. Therefore, we could estimate whether a 

docking score was good or bad for a given protein and 

ligand afterwards. The distribution of docking scoring 

for each inhibitor was shown in Figure 1. It could be 

found that the median docking score was around –6 for 

the most of the inhibitors, and a docking score below –9 

could be seen as a high scoring. However, there were 

certain inhibitors which had a special scoring tendency. 

For example, the docking score for the Vorinostat 

(DB02546) was remarkably worse than other ligands and 

the median was around –3. It proved that the overall scoring 

sampling was necessary for each ligand respectively 

since the scoring tendency could be different.  

Another interesting phenomenon was that with the 

Tadalafil (DB00820), none of the protein could be 

successfully docked. It might be attributed to its less 

rotatable bonds and larger molecular weight, indicating 

that it was less likely for this type of molecule to find a 

rational conformation in the binding pocket. Due to this 

docking failure, Tadalafil was not used as a benchmark 

inhibitor in this study. This phenomenon also proved 

that though reverse docking was a useful tool for target 

prediction, it might be not applicable to certain molecules. 

3.3. Influence of protein conformation changes 

To investigate the influence of protein conformation 

changes, two or three structures of the protein were 

used as the docking input file. We found that the docking 

score could fluctuate sometimes due to the changes 

in protein conformation though the protein type was 

not changed. As a demonstration, the docking scores 

of PDE4 (PDB ID of the proteins: 2QYN, 2QYK, 

3TVX) and general inhibitors caffeine (DB00201), 

paraxanthine (CID4687) and theophylline (DB00277) 

were shown in Table 4. It could be found that for 

DB00201, the docking score just showed a little 

change, while for CID4687 and DB00277 the docking 

score was changed significantly. It demonstrated that 

the input conformation of the binding pocket could 

sometimes affect the docking score between the ligand 

and the protein and even change the conclusion of 

the reverse docking (for DB00277, –8.40 was a good 

docking score, suggesting that this protein could be a 

potential target, while –6.07 was a bad score, which 

could make this protein neglected). Figure 2 shows that 

binding site alignment was also applied to these 

protein structures, and a little conformational difference 

could be found, which might be the reason why different 

docking scores were produced. 

Since the aim of molecular docking was to find a 

proper docking result of the protein and the ligand, we 

only kept the highest score among these structures for 

data analysis for proteins with multiple conformations 

in the benchmark dataset. For example, for docking the 

PDE4 and CID4687, only the score –8.59 was used 

during analysis. 

From the scoring fluctuation due to the protein input 

conformation, it could be inferred that for reverse 

docking, abundant conformation of each protein would 

make the prediction more accurate. The more input 

conformations of a binding pocket were used, the more 

likely a proper docking score could be given. However, 

the limited number of experimentally determined 

structures was still a big challenge. 
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3.4. Prediction precision of the general inhibitors 

In this study, seven general inhibitors were used for 

target prediction (Table 2). Table 5 shows the docking 

score between proteins and their general inhibitors. 

Referring the overall scoring distribution in Figure 1, it 

could be found that the docking score was better than 

median or even better than lower quartile for most of the 

general inhibitors, indicating that the target prediction was 

quite successful. However, for certain inhibitors, such as 

DB02546, the prediction result was not very satisfactory. 

As mentioned before, the overall scoring distribution of 

DB02546 was also quite special, and reverse docking 

might not be applicable to certain molecules.  

3.5. Prediction precision of the selective inhibitors 

Except for Tadalafil (DB00820), nine selective inhibitors 

were used in this study. Theoretically, if protein A and  

Figure 1. Distribution of docking score for each inhibitor in the benchmark dataset while using PDBbind refined set as the protein structure database.  

Figure 2. Binding site alignment (2QYN, 2QYK and 3TVX).  

Table 4. Docking scores of PDE4 and general inhibitors.  

  2QYN 2QYK 3TVX 

DB00201 –7.79 –7.42 –7.89 

CID4687 –6.94 –5.28 –8.59 

DB00277 –8.06 –6.07 –8.40 

2 
 

 
 

0 
 

 
 

–2 
 

 
 

–4 
 

 
 

–6 
 

 
 

–8 
 

 
 

–10 
 

 
 

–12 

D
o
ck

in
g
 s

co
re

  

D
B00

20
1 

Ligand 

D
B07

34
7 

D
B06

23
7 

D
B06

22
8 

D
B03

12
7 

CID
18

37
97
 

D
B01

79
1 

D
B02

54
6 

D
B00

20
3 

CID
46

87
 

D
B06

60
5 

D
B01

65
6 

D
B06

75
1 

CID
44

47
32
 

CID
98

65
51

5 

D
B00

27
7 

Copyright © 2020 Journal of Chinese Pharmaceutical Sciences, School of Pharmaceutical Sciences, Peking University        http://www.jcps.ac.cn

www.jcps.ac.cn



684 

 

Li, M.N. et al. / J. Chin. Pharm. Sci. 2020, 29 (10), 679–688 

protein B are of the same target class, the selective 

inhibitor of protein A should only be highly scored 

against protein A, and a low docking score against 

protein B should be gained though they are similar in 

protein sequence. To verify whether Glide (SP) could 

distinguish the selective inhibitors correctly, we 

docked the selective inhibitors against the proteins in 

the target class of their known targets. The docking 

score was shown in Table 6. 

From Table 6, it could be inferred that the correct 

recognition for the true target of the selective inhibitor 

was extremely challenging. As a demonstration, for 

the target class phosphodiesterases (including subclass 

PDE4 and PDE5), of the five selective inhibitors, only 

three inhibitors could get a higher score against their true 

targets (DB06751, DB06237 and DB00203). Similarly, for 

the target class histone deacetylases (including subclass 

HDAC2, HDAC8 and HDAC4), the inhibitor CID9865515 

got a bad scoring ranking: HDAC8 > HDAC4 > HDAC2, 

while its true targets were HDAC8 and HDAC2. It 

proved that as a reverse docking tool, Glide (SP) was not 

able to recognize the correct target of a selective inhibitor 

against several proteins of the same protein class. 

As reported by Wang et al.[16] and Luo et al.[17], 

the inter-target scoring noises, which are related to 

low-dimensional properties of binding pockets, have a 

great influence on target prediction. It means that the 

docking score of protein A and protein B could be not 

comparable due to the difference of the binding pocket 

properties. As mentioned above, we found that Glide 

(SP) had a poor performance in finding the true target 

for a selective inhibitor, and this might be due to the 

inter-target scoring noise. Though the protein sequence 

might be similar for the protein of the same target class, 

it was possible that the physicochemical properties of 

the binding sites were quite different. 

  DB00201 CID4687 DB00277 DB02546 CID444732 DB03127 DB07347 

PDE4 –7.89 –8.59 –8.40 –5.54 –8.62 –6.73 –6.22 

PDE5 –7.10 –8.19 –8.29 –5.17 –6.54 –6.40 –6.57 

HDAC2 –4.94 –4.83 –5.83 –2.01 –3.99 –5.61 –4.91 

HDAC8 –6.64 –7.39 –6.57 –4.29 –6.97 –6.27 –5.54 

HDAC4 –6.48 –7.36 –7.11 –3.49 –6.59 –6.33 –6.48 

Trypsin –6.38 –6.69 –7.04 –3.25 –5.34 –7.84 –6.52 

Thrombin –6.38 –6.53 –6.99 –2.92 –5.67 –7.43 –7.16 

Factor Xa –7.17 –7.47 –7.64 –3.63 –5.92 –6.38 –6.34 

  DB01791 DB06751 DB01656 DB06237 DB00203 CID9865515 CID183797 DB06605 DB06228 

PDE4 –6.76 –8.31 –6.89 –8.18 –7.38 – – – – 

PDE5 –8.03 –6.39 –8.50 –9.60 –7.42 – – – – 

HDAC2 – – – – – –4.37 – – – 

HDAC8 – – – – – –7.72 – – – 

HDAC4 – – – – – –6.37 – – – 

Trypsin – – – – – – –8.53 –5.27 –5.09 

Thrombin – – – – – – –8.47 –8.35 –5.39 

Factor Xa – – – – – – –9.16 –9.95 –8.73 

Table 5. The docking score of proteins and their general inhibitors in the benchmark dataset. (Light gray bottom color for the correct  

protein-ligand pairs.)  

Table 6. The docking score of selective inhibitors and the proteins in the target class of their known target. (Light gray bottom color for the correct 

protein-ligand pairs.)  
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3.6. A case study about COVID-19 

Since Glide (SP) was proved to be a powerful tool on 

target prediction, we decided to conduct a case study 

about Coronavirus Disease 2019 (COVID-19). As 

reported, chloroquine is found to be capable of inhibiting 

the SARS-CoV-2 infection[18]. To search potential targets 

of chloroquine, we docked it against the proteins in the 

PDBbind refined set, and the top 40 scored (corresponding 

to top 1%) proteins were shown in Table 7. 

From Table 7, it could be found that some proteins 

appeared more than once among top 40 scored proteins. 

One reason was that the frequency of occurrence of 

some popular proteins was relatively high in PDBbind 

refined set. On the other hand, this result also proved 

that the input conformation of protein would affect 

the docking score, since the docking scores of same 

protein name showed differences. 

Among the top 40 scored proteins, no proteins were 

related to the biological activity of chloroquine. Therefore, 

we investigated other proteins with high docking score 

and coagulation factor Xa (docking score = –8.57) 

was found as a possible target. Coagulation factor 

Xa was the activated form of zymogen factor X, 

which was related to the formation of prothrombinase 

complex and clot. Inhibitors of coagulation factor Xa 

could control thrombin levels, therefore a candidate for 

abnormal coagulation[19]. As reported, critical patients 

of COVID-19 always show coagulation dysfunction, 

and the formation of hyaline thrombus is found in 

pulmonary capillary. The application of anticoagulant 

is also suggested, showing a good effect on correcting 

local clotting disorders in the lungs[20]. We suspected 

that coagulation factor Xa was one target of chloroquine 

and therefore made chloroquine effective to some 

extent. 

PDB ID Protein name Docking score PDB ID Protein name Docking score 

2pgz ACh-Binding protein –13.36 3cyz Pheromone-binding protein ASP1 –10.05 

5ioz Transcriptional regulatory repressor protein –11.07 6el5 Heat shock protein 90-alpha –10.04 

3v78 Transcriptional regulatory protein –10.97 2wn9 ACh-Binding protein –9.92 

5nyh Heat shock protein 90-alpha –10.77 6ey8 Heat shock protein 90-alpha –9.92 

4b5d ACh-Binding protein –10.71 5j27 Heat shock protein 90-alpha –9.83 

5j9x Heat shock protein 90-alpha –10.70 4alx ACh-Binding protein –9.81 

2wnc ACh-Binding protein –10.69 5fnc Heat shock protein 90-alpha –9.78 

3t0x Immunoglobulin variable lambda domain M8VLA4 (S55P) –10.65 3ipu Oxysterols receptor LXR-alpha –9.76 

5j86 Heat shock protein 90-alpha –10.64 3t1a Reverse transcriptase –9.72 

3u8l ACh-Binding protein –10.63 2yki Heat shock protein 90-alpha –9.67 

4cwf Heat shock protein 90-alpha –10.45 4cwr Heat shock protein 90-alpha –9.62 

4o09 Heat shock protein 90-alpha –10.38 3c4h Poly(ADP-ribose) polymerase 3 –9.53 

4xir Heat shock protein 90-alpha –10.35 2wnj ACh-Binding protein –9.53 

1e66 Acetylcholinesterase –10.33 4xit Heat shock protein 90-alpha –9.51 

5j20 Heat shock protein 90-alpha –10.31 2yme ACh-Binding protein –9.46 

3qdd Heat shock protein 90-alpha –10.31 4bny 3-Oxoacyl-(acyl-carrier-protein) reductase –9.44 

4qac ACh-Binding protein –10.24 3b2q V-type ATP synthase beta chain –9.44 

5j82 Heat shock protein 90-alpha –10.22 2ha2 Acetylcholinesterase –9.43 

3d0b Heat shock protein 90-alpha –10.09 4xip Heat shock protein 90-alpha –9.43 

4o04 Heat shock protein 90-alpha –10.07 5j6l Heat shock protein 90-alpha –9.40 

Table 7. Top 40 scored proteins while docking with chloroquine.  
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4. Conclusions 

As an important tool for target prediction, reverse 

docking remains essential to drug development. The 

comprehensive evaluation of reverse docking tools is 

quite a significant task both for the users and developers 

of this research field. For different ligands, the overall 

scoring tendency could have their own characteristics, 

while the conformation of the binding site could also 

affect the docking score. Glide (SP) was capable for 

finding potential general targets among thousands of 

proteins. However, it was not able to recognize the true 

target for a selective inhibitor correctly among proteins 

of the same protein class. Therefore, we recommend 

the further development of reverse docking tools and 

rectification of inter-target scoring bias. 
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反向对接的选择性与非选择性抑制剂找靶评价: Glide个案研究  

李明娜1, 吴兴2, 张亮仁1*, 刘振明1* 

1. 北京大学医学部 药学院 天然药物及仿生药物国家重点实验室, 北京 100191 

2. 横店集团控股有限公司, 浙江 杭州 310007   

摘要: 反向对接作为一种靶标预测的有效工具, 有许多方面仍待探究。对反向对接软件的客观评价可以帮助我们

更好地了解这些工具的长处与短处, 并在靶标预测的过程中起到指导作用。本研究中, 我们评估了Glide (SP)针对选择性

抑制剂与非选择性抑制剂的靶标预测能力。结果说明针对不同配体, 对接打分的倾向可能存在差异, 因此总体打分抽样

对帮助我们更好地理解某对配体受体间的对接打分具有重要的意义。另外, 对接时结合口袋的输入构象对对接结果存在

一定的影响。Glide (SP)显示出较好的对非选择性抑制剂的靶标预测能力。然而, 其对于选择性抑制剂的靶标预测准确度

相对较低, 说明该软件不适用于这方面的工作。针对COVID-19的案例研究表面凝血因子Xa可能是氯喹的潜在靶点。

因此, 我们认为对反向对接软件的进一步开发与靶点间打分差异的修正十分必要。         

关键词: 反向对接; 靶标预测; 软件评估  
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